IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v271y2018i3p808-817.html
   My bibliography  Save this article

A stochastic multiple gradient descent algorithm

Author

Listed:
  • Mercier, Quentin
  • Poirion, Fabrice
  • Désidéri, Jean-Antoine

Abstract

In this article, we propose a new method for multiobjective optimization problems in which the objective functions are expressed as expectations of random functions. The present method is based on an extension of the classical stochastic gradient algorithm and a deterministic multiobjective algorithm, the Multiple Gradient Descent Algorithm (MGDA). In MGDA a descent direction common to all specified objective functions is identified through a result of convex geometry. The use of this common descent vector and the Pareto stationarity definition into the stochastic gradient algorithm makes the algorithm able to solve multiobjective problems. The mean square and almost sure convergence of this new algorithm are proven considering the classical stochastic gradient algorithm hypothesis. The algorithm efficiency is illustrated on a set of benchmarks with diverse complexity and assessed in comparison with two classical algorithms (NSGA-II, DMS) coupled with a Monte Carlo expectation estimator.

Suggested Citation

  • Mercier, Quentin & Poirion, Fabrice & Désidéri, Jean-Antoine, 2018. "A stochastic multiple gradient descent algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 808-817.
  • Handle: RePEc:eee:ejores:v:271:y:2018:i:3:p:808-817
    DOI: 10.1016/j.ejor.2018.05.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718304831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.05.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    3. Jörg Fliege & Huifu Xu, 2011. "Stochastic Multiobjective Optimization: Sample Average Approximation and Applications," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 135-162, October.
    4. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    5. Wang, Zutong & Guo, Jiansheng & Zheng, Mingfa & Wang, Ying, 2015. "Uncertain multiobjective traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 478-489.
    6. Caballero, Rafael & Cerda, Emilio & del Mar Munoz, Maria & Rey, Lourdes, 2004. "Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 158(3), pages 633-648, November.
    7. George B. Dantzig, 2004. "Linear Programming Under Uncertainty," Management Science, INFORMS, vol. 50(12_supple), pages 1764-1769, December.
    8. Henri Bonnel & Julien Collonge, 2014. "Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 405-427, August.
    9. Klamroth, Kathrin & Köbis, Elisabeth & Schöbel, Anita & Tammer, Christiane, 2017. "A unified approach to uncertain optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 403-420.
    10. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulian Gao & Gehao Lu & Jimei Gao & Jinggang Li, 2023. "A High-Performance Federated Learning Aggregation Algorithm Based on Learning Rate Adjustment and Client Sampling," Mathematics, MDPI, vol. 11(20), pages 1-29, October.
    2. Chen, Jian & Tang, Liping & Yang, Xinmin, 2023. "A Barzilai-Borwein descent method for multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 196-209.
    3. Zhihao Li & Qingtao Wu & Moli Zhang & Lin Wang & Youming Ge & Guoyong Wang, 2025. "Stochastic Zeroth-Order Multi-Gradient Algorithm for Multi-Objective Optimization," Mathematics, MDPI, vol. 13(4), pages 1-31, February.
    4. Suyun Liu & Luis Nunes Vicente, 2022. "Accuracy and fairness trade-offs in machine learning: a stochastic multi-objective approach," Computational Management Science, Springer, vol. 19(3), pages 513-537, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier León & Justo Puerto & Begoña Vitoriano, 2020. "A Risk-Aversion Approach for the Multiobjective Stochastic Programming Problem," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    2. Yong Zhao & Wang Chen & Xinmin Yang, 2024. "Adaptive Sampling Stochastic Multigradient Algorithm for Stochastic Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 215-241, January.
    3. Alexander Engau, 2017. "Proper Efficiency and Tradeoffs in Multiple Criteria and Stochastic Optimization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 119-134, January.
    4. Fouad Ben Abdelaziz & Cinzia Colapinto & Davide La Torre & Danilo Liuzzi, 2020. "A stochastic dynamic multiobjective model for sustainable decision making," Annals of Operations Research, Springer, vol. 293(2), pages 539-556, October.
    5. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    6. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    7. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    8. Matteo Rocca, 2025. "Sensitivity to uncertainty and scalarization in robust multiobjective optimization: an overview with application to mean-variance portfolio optimization," Annals of Operations Research, Springer, vol. 346(2), pages 1671-1686, March.
    9. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    10. Selçuklu, Saltuk Buğra & Coit, David W. & Felder, Frank A., 2020. "Pareto uncertainty index for evaluating and comparing solutions for stochastic multiple objective problems," European Journal of Operational Research, Elsevier, vol. 284(2), pages 644-659.
    11. Elisa Caprari & Lorenzo Cerboni Baiardi & Elena Molho, 2022. "Scalarization and robustness in uncertain vector optimization problems: a non componentwise approach," Journal of Global Optimization, Springer, vol. 84(2), pages 295-320, October.
    12. Mingfa Zheng & Yuan Yi & Zutong Wang & Tianjun Liao, 2017. "Relations among efficient solutions in uncertain multiobjective programming," Fuzzy Optimization and Decision Making, Springer, vol. 16(3), pages 329-357, September.
    13. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    14. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    15. Crespi, Giovanni P. & Kuroiwa, Daishi & Rocca, Matteo, 2018. "Robust optimization: Sensitivity to uncertainty in scalar and vector cases, with applications," Operations Research Perspectives, Elsevier, vol. 5(C), pages 113-119.
    16. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    17. Botte, Marco & Schöbel, Anita, 2019. "Dominance for multi-objective robust optimization concepts," European Journal of Operational Research, Elsevier, vol. 273(2), pages 430-440.
    18. Chen, Jian & Tang, Liping & Yang, Xinmin, 2023. "A Barzilai-Borwein descent method for multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 196-209.
    19. A. Georgantas, 2020. "Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis," Papers 2010.13397, arXiv.org.
    20. Xiangkai Sun & Kok Lay Teo & Xian-Jun Long, 2021. "Some Characterizations of Approximate Solutions for Robust Semi-infinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 281-310, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:271:y:2018:i:3:p:808-817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.