IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v271y2018i3p808-817.html
   My bibliography  Save this article

A stochastic multiple gradient descent algorithm

Author

Listed:
  • Mercier, Quentin
  • Poirion, Fabrice
  • Désidéri, Jean-Antoine

Abstract

In this article, we propose a new method for multiobjective optimization problems in which the objective functions are expressed as expectations of random functions. The present method is based on an extension of the classical stochastic gradient algorithm and a deterministic multiobjective algorithm, the Multiple Gradient Descent Algorithm (MGDA). In MGDA a descent direction common to all specified objective functions is identified through a result of convex geometry. The use of this common descent vector and the Pareto stationarity definition into the stochastic gradient algorithm makes the algorithm able to solve multiobjective problems. The mean square and almost sure convergence of this new algorithm are proven considering the classical stochastic gradient algorithm hypothesis. The algorithm efficiency is illustrated on a set of benchmarks with diverse complexity and assessed in comparison with two classical algorithms (NSGA-II, DMS) coupled with a Monte Carlo expectation estimator.

Suggested Citation

  • Mercier, Quentin & Poirion, Fabrice & Désidéri, Jean-Antoine, 2018. "A stochastic multiple gradient descent algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 808-817.
  • Handle: RePEc:eee:ejores:v:271:y:2018:i:3:p:808-817
    DOI: 10.1016/j.ejor.2018.05.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718304831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.05.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    3. Caballero, Rafael & Cerda, Emilio & del Mar Munoz, Maria & Rey, Lourdes, 2004. "Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 158(3), pages 633-648, November.
    4. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    5. George B. Dantzig, 2004. "Linear Programming Under Uncertainty," Management Science, INFORMS, vol. 50(12_supple), pages 1764-1769, December.
    6. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    7. Jörg Fliege & Huifu Xu, 2011. "Stochastic Multiobjective Optimization: Sample Average Approximation and Applications," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 135-162, October.
    8. Henri Bonnel & Julien Collonge, 2014. "Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 405-427, August.
    9. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    10. Wang, Zutong & Guo, Jiansheng & Zheng, Mingfa & Wang, Ying, 2015. "Uncertain multiobjective traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 478-489.
    11. Klamroth, Kathrin & Köbis, Elisabeth & Schöbel, Anita & Tammer, Christiane, 2017. "A unified approach to uncertain optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 403-420.
    12. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulian Gao & Gehao Lu & Jimei Gao & Jinggang Li, 2023. "A High-Performance Federated Learning Aggregation Algorithm Based on Learning Rate Adjustment and Client Sampling," Mathematics, MDPI, vol. 11(20), pages 1-29, October.
    2. Chen, Jian & Tang, Liping & Yang, Xinmin, 2023. "A Barzilai-Borwein descent method for multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 196-209.
    3. Suyun Liu & Luis Nunes Vicente, 2022. "Accuracy and fairness trade-offs in machine learning: a stochastic multi-objective approach," Computational Management Science, Springer, vol. 19(3), pages 513-537, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier León & Justo Puerto & Begoña Vitoriano, 2020. "A Risk-Aversion Approach for the Multiobjective Stochastic Programming Problem," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    2. Fouad Ben Abdelaziz & Cinzia Colapinto & Davide La Torre & Danilo Liuzzi, 2020. "A stochastic dynamic multiobjective model for sustainable decision making," Annals of Operations Research, Springer, vol. 293(2), pages 539-556, October.
    3. Selçuklu, Saltuk Buğra & Coit, David W. & Felder, Frank A., 2020. "Pareto uncertainty index for evaluating and comparing solutions for stochastic multiple objective problems," European Journal of Operational Research, Elsevier, vol. 284(2), pages 644-659.
    4. Mingfa Zheng & Yuan Yi & Zutong Wang & Tianjun Liao, 2017. "Relations among efficient solutions in uncertain multiobjective programming," Fuzzy Optimization and Decision Making, Springer, vol. 16(3), pages 329-357, September.
    5. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    6. Zarghami, Mahdi & Szidarovszky, Ferenc, 2009. "Revising the OWA operator for multi criteria decision making problems under uncertainty," European Journal of Operational Research, Elsevier, vol. 198(1), pages 259-265, October.
    7. Jörg Fliege & Huifu Xu, 2011. "Stochastic Multiobjective Optimization: Sample Average Approximation and Applications," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 135-162, October.
    8. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    9. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    10. S. Rangavajhala & A. A. Mullur & A. Messac, 2009. "Equality Constraints in Multiobjective Robust Design Optimization: Decision Making Problem," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 315-337, February.
    11. Mahdi Zarghami, 2010. "Urban Water Management Using Fuzzy-Probabilistic Multi-Objective Programming with Dynamic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4491-4504, December.
    12. Sophie N. Parragh & Fabien Tricoire & Walter J. Gutjahr, 2022. "A branch-and-Benders-cut algorithm for a bi-objective stochastic facility location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 419-459, June.
    13. T Peña & P Lara & C Castrodeza, 2009. "Multiobjective stochastic programming for feed formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1738-1748, December.
    14. Belaid AOUNI & Cinzia COLAPINTO & Davide LA TORRE, 2008. "Solving stochastic multi-objective programming through the GP model," Departmental Working Papers 2008-18, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    15. Fatima Bellahcene, 2019. "Decision maker's preferences modeling for multiple objective stochastic linear programming problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(3), pages 5-16.
    16. Abdelaziz, Fouad Ben, 2012. "Solution approaches for the multiobjective stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 1-16.
    17. Emilio Cerdá & Julio Moreno Lorente, 2009. "Chance Constrained Programming with one Discrete Random Variable in Each Constraint," Working Papers 2009-05, FEDEA.
    18. Chaabane Djamal & Mebrek Fatma, 2014. "Optimization of a linear function over the set of stochastic efficient solutions," Computational Management Science, Springer, vol. 11(1), pages 157-178, January.
    19. Agnieszka Kurdyś-Kujawska & Agnieszka Sompolska-Rzechuła & Joanna Pawłowska-Tyszko & Michał Soliwoda, 2021. "Crop Insurance, Land Productivity and the Environment: A Way forward to a Better Understanding," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    20. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Discussion Paper 2005-5, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:271:y:2018:i:3:p:808-817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.