IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v225y2013i2p244-252.html
   My bibliography  Save this article

New lower bounds for the three-dimensional orthogonal bin packing problem

Author

Listed:
  • Liao, Chung-Shou
  • Hsu, Chia-Hong

Abstract

In this paper, we consider the three-dimensional orthogonal bin packing problem, which is a generalization of the well-known bin packing problem. We present new lower bounds for the problem from a combinatorial point of view and demonstrate that they theoretically dominate all previous results from the literature. The comparison is also done concerning asymptotic worst-case performance ratios. The new lower bounds can be more efficiently computed in polynomial time. In addition, we study the non-oriented model, which allows items to be rotated.

Suggested Citation

  • Liao, Chung-Shou & Hsu, Chia-Hong, 2013. "New lower bounds for the three-dimensional orthogonal bin packing problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 244-252.
  • Handle: RePEc:eee:ejores:v:225:y:2013:i:2:p:244-252
    DOI: 10.1016/j.ejor.2012.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712007709
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crainic, Teodor Gabriel & Perboli, Guido & Pezzuto, Miriam & Tadei, Roberto, 2007. "Computing the asymptotic worst-case of bin packing lower bounds," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1295-1303, December.
    2. Carlier, Jacques & Neron, Emmanuel, 2007. "Computing redundant resources for the resource constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1452-1463, February.
    3. Silvano Martello & Daniele Vigo, 1998. "Exact Solution of the Two-Dimensional Finite Bin Packing Problem," Management Science, INFORMS, vol. 44(3), pages 388-399, March.
    4. Scholl, Armin & Klein, Robert & Jürgens, Christian, 1996. "BISON : a fast hybrid procedure for exactly solving the one-dimensional bin packing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 49135, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    6. Khanafer, Ali & Clautiaux, François & Talbi, El-Ghazali, 2010. "New lower bounds for bin packing problems with conflicts," European Journal of Operational Research, Elsevier, vol. 206(2), pages 281-288, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Qian & Lim, Andrew & Zhu, Wenbin, 2015. "The two-dimensional vector packing problem with piecewise linear cost function," Omega, Elsevier, vol. 50(C), pages 43-53.
    2. Cui, Yi-Ping & Cui, Yaodong & Tang, Tianbing, 2015. "Sequential heuristic for the two-dimensional bin-packing problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 43-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:225:y:2013:i:2:p:244-252. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.