IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v219y2012i3p541-556.html
   My bibliography  Save this article

A stochastic control formalism for dynamic biologically conformal radiation therapy

Author

Listed:
  • Kim, Minsun
  • Ghate, Archis
  • Phillips, Mark H.

Abstract

State-of-the-art methods for optimizing cancer treatment over several weeks of external beam radiotherapy take a static–deterministic view of the treatment planning process, mainly focusing on spatial distribution of dose. Recent progress in quantitative functional imaging as well as mathematical models of tumor response to radiotherapy is increasingly enabling treatment planners to monitor/predict a patient’s biological response over weeks of treatment. In this paper we introduce dynamic biologically conformal radiation therapy (DBCRT), a mathematical framework intended to exploit these emerging technological and biological modeling advances to design patient-specific radiation treatment strategies that dynamically adapt to the spatiotemporal evolution of a patient’s biological response over several treatment sessions in order to achieve the best possible health outcome. More specifically, we propose a discrete-time stochastic control formalism where we use the patient’s biological condition to model the system state and the beam intensities as controls. Three approximate control schemes are then applied and compared for efficiency. Numerical simulations on test cases show that DBCRT results in a 64–98% improvement in treatment efficacy as compared to the more conventional static–deterministic approach.

Suggested Citation

  • Kim, Minsun & Ghate, Archis & Phillips, Mark H., 2012. "A stochastic control formalism for dynamic biologically conformal radiation therapy," European Journal of Operational Research, Elsevier, vol. 219(3), pages 541-556.
  • Handle: RePEc:eee:ejores:v:219:y:2012:i:3:p:541-556
    DOI: 10.1016/j.ejor.2011.10.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711009799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.10.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Edwin Romeijn & Ravindra K. Ahuja & James F. Dempsey & Arvind Kumar, 2006. "A New Linear Programming Approach to Radiation Therapy Treatment Planning Problems," Operations Research, INFORMS, vol. 54(2), pages 201-216, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Bortfeld & Jagdish Ramakrishnan & John N. Tsitsiklis & Jan Unkelbach, 2015. "Optimization of Radiation Therapy Fractionation Schedules in the Presence of Tumor Repopulation," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 788-803, November.
    2. Shraddha Ghatkar, 2019. "Optimization of fractionation schemes and beamlet intensities in intensity-modulated radiation therapy with changing cancer tumor properties," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 46(4), pages 385-407, December.
    3. Fatemeh Saberian & Archis Ghate & Minsun Kim, 2017. "Spatiotemporally Optimal Fractionation in Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 422-437, August.
    4. Ali Ajdari & Fatemeh Saberian & Archis Ghate, 2020. "A Theoretical Framework for Learning Tumor Dose-Response Uncertainty in Individualized Spatiobiologically Integrated Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 930-951, October.
    5. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    6. Yasin Gocgun, 2018. "Simulation-based approximate policy iteration for dynamic patient scheduling for radiation therapy," Health Care Management Science, Springer, vol. 21(3), pages 317-325, September.
    7. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Z. Taşkın & J. Smith & H. Romeijn, 2012. "Mixed-integer programming techniques for decomposing IMRT fluence maps using rectangular apertures," Annals of Operations Research, Springer, vol. 196(1), pages 799-818, July.
    2. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    3. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    4. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    5. Dunbar, Michelle & O’Brien, Ricky & Froyland, Gary, 2020. "Optimising lung imaging for cancer radiation therapy," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1038-1052.
    6. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    7. Z. Caner Taşkın & J. Cole Smith & H. Edwin Romeijn & James F. Dempsey, 2010. "Optimal Multileaf Collimator Leaf Sequencing in IMRT Treatment Planning," Operations Research, INFORMS, vol. 58(3), pages 674-690, June.
    8. Thomas Bortfeld & Timothy C. Y. Chan & Alexei Trofimov & John N. Tsitsiklis, 2008. "Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy," Operations Research, INFORMS, vol. 56(6), pages 1461-1473, December.
    9. Chan, Timothy C.Y. & Mišić, Velibor V., 2013. "Adaptive and robust radiation therapy optimization for lung cancer," European Journal of Operational Research, Elsevier, vol. 231(3), pages 745-756.
    10. Michael Ferris & Rikhardur Einarsson & Ziping Jiang & David Shepard, 2006. "Sampling issues for optimization in radiotherapy," Annals of Operations Research, Springer, vol. 148(1), pages 95-115, November.
    11. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    12. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    13. Ali Ajdari & Fatemeh Saberian & Archis Ghate, 2020. "A Theoretical Framework for Learning Tumor Dose-Response Uncertainty in Individualized Spatiobiologically Integrated Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 930-951, October.
    14. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    15. Shabbir Ahmed & Ozan Gozbasi & Martin Savelsbergh & Ian Crocker & Tim Fox & Eduard Schreibmann, 2010. "An Automated Intensity-Modulated Radiation Therapy Planning System," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 568-583, November.
    16. Özge Karanfil & Yaman Barlas, 2008. "A Dynamic Simulator for the Management of Disorders of the Body Water Homeostasis," Operations Research, INFORMS, vol. 56(6), pages 1474-1492, December.
    17. Chan, Timothy C.Y. & Mahmoudzadeh, Houra & Purdie, Thomas G., 2014. "A robust-CVaR optimization approach with application to breast cancer therapy," European Journal of Operational Research, Elsevier, vol. 238(3), pages 876-885.
    18. Hao Howard Zhang & Leyuan Shi & Robert Meyer & Daryl Nazareth & Warren D'Souza, 2009. "Solving Beam-Angle Selection and Dose Optimization Simultaneously via High-Throughput Computing," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 427-444, August.
    19. Hanif Malekpoor & Nishikant Mishra & Sameer Kumar, 2022. "A novel TOPSIS–CBR goal programming approach to sustainable healthcare treatment," Annals of Operations Research, Springer, vol. 312(2), pages 1403-1425, May.
    20. Sera Kahruman & Elif Ulusal & Sergiy Butenko & Illya Hicks & Kathleen Diehl, 2012. "Scheduling the adjuvant endocrine therapy for early stage breast cancer," Annals of Operations Research, Springer, vol. 196(1), pages 683-705, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:219:y:2012:i:3:p:541-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.