IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i2p980-985.html
   My bibliography  Save this article

Computing stable loads for pallets

Author

Listed:
  • Kocjan, W.
  • Holmström, K.

Abstract

This paper describes an Integer Programming model for generating stable loading patterns for the Pallet Loading Problem under several stability criteria. The results obtained during evaluation show great improvement in the number of stable patterns in comparison with results reported earlier. Moreover, most of the solved cases also ensure optimality in terms of utilization of a pallet.

Suggested Citation

  • Kocjan, W. & Holmström, K., 2010. "Computing stable loads for pallets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 980-985, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:980-985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00359-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    2. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    3. Dowsland, Kathryn A., 1987. "An exact algorithm for the pallet loading problem," European Journal of Operational Research, Elsevier, vol. 31(1), pages 78-84, July.
    4. Harold J. Steudel, 1979. "Generating Pallet Loading Patterns: A Special Case of the Two-Dimensional Cutting Stock Problem," Management Science, INFORMS, vol. 25(10), pages 997-1004, October.
    5. Martins, Gustavo H.A. & Dell, Robert F., 2008. "Solving the pallet loading problem," European Journal of Operational Research, Elsevier, vol. 184(2), pages 429-440, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McDonald, Conor M., 2016. "Integrating packaging and supply chain decisions: Selection of economic handling unit quantities," International Journal of Production Economics, Elsevier, vol. 180(C), pages 208-221.
    2. Elia, Valerio & Gnoni, Maria Grazia, 2015. "Designing an effective closed loop system for pallet management," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 730-740.
    3. Hugo Barros & Teresa Pereira & António G. Ramos & Fernanda A. Ferreira, 2021. "Complexity Constraint in the Distributor’s Pallet Loading Problem," Mathematics, MDPI, vol. 9(15), pages 1-20, July.
    4. Lu, Yiping & Cha, Jianzhong, 2014. "A fast algorithm for identifying minimum size instances of the equivalence classes of the Pallet Loading Problem," European Journal of Operational Research, Elsevier, vol. 237(3), pages 794-801.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L Lins & S Lins & R Morabito, 2003. "An L-approach for packing (ℓ, w)-rectangles into rectangular and L-shaped pieces," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(7), pages 777-789, July.
    2. Chen, C. S. & Lee, S. M. & Shen, Q. S., 1995. "An analytical model for the container loading problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 68-76, January.
    3. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    4. McDonald, Conor M., 2016. "Integrating packaging and supply chain decisions: Selection of economic handling unit quantities," International Journal of Production Economics, Elsevier, vol. 180(C), pages 208-221.
    5. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    6. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    7. Gregory S. Taylor & Yupo Chan & Ghulam Rasool, 2017. "A three-dimensional bin-packing model: exact multicriteria solution and computational complexity," Annals of Operations Research, Springer, vol. 251(1), pages 397-427, April.
    8. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    9. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    10. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    11. M. Muntazir Mehdi & Le Wang & Sean P. Willems, 2022. "Developing a Maximum Inscribed Rectangle Heuristic to Satisfy Rush Orders for Heavy Plate Steel," Interfaces, INFORMS, vol. 52(3), pages 283-294, May.
    12. Arenales, Marcos & Morabito, Reinaldo, 1995. "An AND/OR-graph approach to the solution of two-dimensional non-guillotine cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 599-617, August.
    13. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    14. Martins, Gustavo H.A. & Dell, Robert F., 2008. "Solving the pallet loading problem," European Journal of Operational Research, Elsevier, vol. 184(2), pages 429-440, January.
    15. Celia Glass & Jeroen Oostrum, 2010. "Bun splitting: a practical cutting stock problem," Annals of Operations Research, Springer, vol. 179(1), pages 15-33, September.
    16. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    17. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    18. G M Ribeiro & L A N Lorena, 2008. "Optimizing the woodpulp stowage using Lagrangean relaxation with clusters," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 600-606, May.
    19. de Armas, Jesica & Miranda, Gara & León, Coromoto, 2012. "Improving the efficiency of a best-first bottom-up approach for the Constrained 2D Cutting Problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 201-213.
    20. Adamos Daios & Nikolaos Kladovasilakis & Ioannis Kostavelis, 2024. "Mixed Palletizing for Smart Warehouse Environments: Sustainability Review of Existing Methods," Sustainability, MDPI, vol. 16(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:980-985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.