IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v199y2009i2p315-322.html
   My bibliography  Save this article

A tighter variant of Jensen's lower bound for stochastic programs and separable approximations to recourse functions

Author

Listed:
  • Topaloglu, Huseyin

Abstract

In this paper, we propose a new method to compute lower bounds on the optimal objective value of a stochastic program and show how this method can be used to construct separable approximations to the recourse functions. We show that our method yields tighter lower bounds than Jensen's lower bound and it requires a reasonable amount of computational effort even for large problems. The fundamental idea behind our method is to relax certain constraints by associating dual multipliers with them. This yields a smaller stochastic program that is easier to solve. We particularly focus on the special case where we relax all but one of the constraints. In this case, the recourse functions of the smaller stochastic program are one dimensional functions. We use these one dimensional recourse functions to construct separable approximations to the original recourse functions. Computational experiments indicate that our lower bounds can significantly improve Jensen's lower bound and our recourse function approximations can provide good solutions.

Suggested Citation

  • Topaloglu, Huseyin, 2009. "A tighter variant of Jensen's lower bound for stochastic programs and separable approximations to recourse functions," European Journal of Operational Research, Elsevier, vol. 199(2), pages 315-322, December.
  • Handle: RePEc:eee:ejores:v:199:y:2009:i:2:p:315-322
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)01022-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David P. Morton & R. Kevin Wood, 1999. "Restricted-Recourse Bounds for Stochastic Linear Programming," Operations Research, INFORMS, vol. 47(6), pages 943-956, December.
    2. Raymond K. Cheung & Warren B. Powell, 1996. "An Algorithm for Multistage Dynamic Networks with Random Arc Capacities, with an Application to Dynamic Fleet Management," Operations Research, INFORMS, vol. 44(6), pages 951-963, December.
    3. Gregory A. Godfrey & Warren B. Powell, 2001. "An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution," Management Science, INFORMS, vol. 47(8), pages 1101-1112, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McAleer, M.J. & Jiménez-Martín, J.A. & Pérez-Amaral, T., 2008. "A decision rule to minimize daily capital charges in forecasting value-at-risk," Econometric Institute Research Papers EI 2008-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Qiang & Wang, Tingsong & Wang, Shuaian, 2012. "Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand," European Journal of Operational Research, Elsevier, vol. 223(1), pages 96-105.
    2. Joel A. Shapiro & Warren B. Powell, 2006. "A Metastrategy for Large-Scale Resource Management Based on Informational Decomposition," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 43-60, February.
    3. Warren Powell & Andrzej Ruszczyński & Huseyin Topaloglu, 2004. "Learning Algorithms for Separable Approximations of Discrete Stochastic Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 814-836, November.
    4. Song, Haiqing & Huang, Huei-Chuen, 2008. "A successive convex approximation method for multistage workforce capacity planning problem with turnover," European Journal of Operational Research, Elsevier, vol. 188(1), pages 29-48, July.
    5. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    6. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    7. Francisco Barahona & Stuart Bermon & Oktay Günlük & Sarah Hood, 2005. "Robust capacity planning in semiconductor manufacturing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 459-468, August.
    8. Raymond K. Cheung & Chuen-Yih Chen, 1998. "A Two-Stage Stochastic Network Model and Solution Methods for the Dynamic Empty Container Allocation Problem," Transportation Science, INFORMS, vol. 32(2), pages 142-162, May.
    9. Helena Gaspars-Wieloch, 2017. "Newsvendor problem under complete uncertainty: a case of innovative products," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 561-585, September.
    10. Saif Benjaafar & Daniel Jiang & Xiang Li & Xiaobo Li, 2022. "Dynamic Inventory Repositioning in On-Demand Rental Networks," Management Science, INFORMS, vol. 68(11), pages 7861-7878, November.
    11. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, II: Multiperiod Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 40-54, February.
    12. Kochel, Peter & Kunze, Sophie & Nielander, Ulf, 2003. "Optimal control of a distributed service system with moving resources: Application to the fleet sizing and allocation problem," International Journal of Production Economics, Elsevier, vol. 81(1), pages 443-459, January.
    13. Gokhan Metan & Aurélie Thiele, 2016. "Protecting the data-driven newsvendor against rare events: a correction-term approach," Computational Management Science, Springer, vol. 13(3), pages 459-482, July.
    14. Woonghee Tim Huh & Paat Rusmevichientong, 2009. "A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 103-123, February.
    15. Woonghee Tim Huh & Ganesh Janakiraman & John A. Muckstadt & Paat Rusmevichientong, 2009. "An Adaptive Algorithm for Finding the Optimal Base-Stock Policy in Lost Sales Inventory Systems with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 397-416, May.
    16. Cong Shi & Weidong Chen & Izak Duenyas, 2016. "Technical Note—Nonparametric Data-Driven Algorithms for Multiproduct Inventory Systems with Censored Demand," Operations Research, INFORMS, vol. 64(2), pages 362-370, April.
    17. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    18. Retsef Levi & Georgia Perakis & Joline Uichanco, 2015. "The Data-Driven Newsvendor Problem: New Bounds and Insights," Operations Research, INFORMS, vol. 63(6), pages 1294-1306, December.
    19. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    20. Thapalia, Biju K. & Crainic, Teodor Gabriel & Kaut, Michal & Wallace, Stein W., 2012. "Single-commodity network design with random edge capacities," European Journal of Operational Research, Elsevier, vol. 220(2), pages 394-403.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:2:p:315-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.