IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v193y2009i1p73-85.html
   My bibliography  Save this article

A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times

Author

Listed:
  • Anghinolfi, Davide
  • Paolucci, Massimo

Abstract

In this paper we present a new Discrete Particle Swarm Optimization (DPSO) approach to face the NP-hard single machine total weighted tardiness scheduling problem in presence of sequence-dependent setup times. Differently from previous approaches the proposed DPSO uses a discrete model both for particle position and velocity and a coherent sequence metric. We tested the proposed DPSO mainly over a benchmark originally proposed by Cicirello in 2003 and available online. The results obtained show the competitiveness of our DPSO, which is able to outperform the best known results for the benchmark. In addition, we also tested the DPSO on a set of benchmark instances from ORLIB for the single machine total weighted tardiness problem, and we analysed the role of the DPSO swarm intelligence mechanisms as well as the local search intensification phase included in the algorithm.

Suggested Citation

  • Anghinolfi, Davide & Paolucci, Massimo, 2009. "A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 193(1), pages 73-85, February.
  • Handle: RePEc:eee:ejores:v:193:y:2009:i:1:p:73-85
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01072-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    2. Franca, Paulo M. & Mendes, Alexandre & Moscato, Pablo, 2001. "A memetic algorithm for the total tardiness single machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 132(1), pages 224-242, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    3. Chen, Yin-Yann & Cheng, Chen-Yang & Wang, Li-Chih & Chen, Tzu-Li, 2013. "A hybrid approach based on the variable neighborhood search and particle swarm optimization for parallel machine scheduling problems—A case study for solar cell industry," International Journal of Production Economics, Elsevier, vol. 141(1), pages 66-78.
    4. Zeng, Ziqiang & Nasri, Ehsan & Chini, Abdol & Ries, Robert & Xu, Jiuping, 2015. "A multiple objective decision making model for energy generation portfolio under fuzzy uncertainty: Case study of large scale investor-owned utilities in Florida," Renewable Energy, Elsevier, vol. 75(C), pages 224-242.
    5. Mallor, Fermin & Guardiola, Ivan G., 2014. "The Weibull scheduling index for client driven manufacturing processes," International Journal of Production Economics, Elsevier, vol. 150(C), pages 225-238.
    6. Albert Corominas & Alberto García-Villoria & Rafael Pastor, 2013. "Metaheuristic algorithms hybridised with variable neighbourhood search for solving the response time variability problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 296-312, July.
    7. Miguel A. González & Juan José Palacios & Camino R. Vela & Alejandro Hernández-Arauzo, 0. "Scatter search for minimizing weighted tardiness in a single machine scheduling with setups," Journal of Heuristics, Springer, vol. 0, pages 1-30.
    8. Anzanello, Michel J. & Fogliatto, Flavio S. & Santos, Luana, 2014. "Learning dependent job scheduling in mass customized scenarios considering ergonomic factors," International Journal of Production Economics, Elsevier, vol. 154(C), pages 136-145.
    9. repec:spr:joheur:v:23:y:2017:i:2:d:10.1007_s10732-017-9325-1 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:193:y:2009:i:1:p:73-85. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.