IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v192y2009i1p93-104.html
   My bibliography  Save this article

Optimal location of dwell points in a single loop AGV system with time restrictions on vehicle availability

Author

Listed:
  • Ventura, José A.
  • Rieksts, Brian Q.

Abstract

Since the workload of a manufacturing system changes over time, the material handling equipment used in the facility will be idle at certain time intervals to avoid system overload. In this context, a relevant control problem in operating an automated guided vehicle (AGV) system is where to locate idle vehicles. These locations, called dwell points, establish the response times for AVG requests. In this article, a dynamic programming algorithm to solve idle vehicle positioning problems in unidirectional single loop systems is developed to minimize the maximum response time considering restrictions on vehicle time available to travel and load/unload requests. This polynomial time algorithm finds optimal dwell points when all requests from a given pick-up station are handled by a single AGV. The proposed algorithm is used to study the change in maximum response time as a function of the number of vehicles in the system.

Suggested Citation

  • Ventura, José A. & Rieksts, Brian Q., 2009. "Optimal location of dwell points in a single loop AGV system with time restrictions on vehicle availability," European Journal of Operational Research, Elsevier, vol. 192(1), pages 93-104, January.
  • Handle: RePEc:eee:ejores:v:192:y:2009:i:1:p:93-104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00934-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asef-Vaziri, Ardavan & Laporte, Gilbert, 2005. "Loop based facility planning and material handling," European Journal of Operational Research, Elsevier, vol. 164(1), pages 1-11, July.
    2. Kim, Kap Hwan, 1995. "Positioning of automated guided vehicles in a loop layout to minimize the mean vehicle response time," International Journal of Production Economics, Elsevier, vol. 39(3), pages 201-214, May.
    3. Egbelu, Pius J., 1993. "Positioning of automated guided vehicles in a loop layout to improve response time," European Journal of Operational Research, Elsevier, vol. 71(1), pages 32-44, November.
    4. Gademann, A. J. R. M. & van de Velde, S. L., 2000. "Positioning automated guided vehicles in a loop layout," European Journal of Operational Research, Elsevier, vol. 127(3), pages 565-573, December.
    5. Asef-Vaziri, Ardavan & Laporte, Gilbert & Ortiz, Robert, 2007. "Exact and heuristic procedures for the material handling circular flow path design problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 707-726, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ejores:v:264:y:2018:i:3:p:1033-1044 is not listed on IDEAS
    2. repec:spr:joptap:v:173:y:2017:i:3:d:10.1007_s10957-016-1056-1 is not listed on IDEAS
    3. Ventura, José A. & Pazhani, Subramanian & Mendoza, Abraham, 2015. "Finding optimal dwell points for automated guided vehicles in general guide-path layouts," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 850-861.
    4. repec:eee:proeco:v:193:y:2017:i:c:p:713-725 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:192:y:2009:i:1:p:93-104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.