IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v133y2001i3p653-666.html
   My bibliography  Save this article

A single-period model for conjunctive use of ground and surface water under severe overdrafts and water deficit

Author

Listed:
  • Azaiez, M. N.
  • Hariga, M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Azaiez, M. N. & Hariga, M., 2001. "A single-period model for conjunctive use of ground and surface water under severe overdrafts and water deficit," European Journal of Operational Research, Elsevier, vol. 133(3), pages 653-666, September.
  • Handle: RePEc:eee:ejores:v:133:y:2001:i:3:p:653-666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(00)00212-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rao, N. H. & Sarma, P. B. S. & Chander, Subhash, 1988. "A simple dated water-production function for use in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 13(1), pages 25-32, April.
    2. Haouari, Mohamed & Azaiez, Mohamed N., 2001. "Optimal cropping patterns under water deficits," European Journal of Operational Research, Elsevier, vol. 130(1), pages 133-146, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliasghar Montazar, 2013. "A decision tool for optimal irrigated crop planning and water resources sustainability," Journal of Global Optimization, Springer, vol. 55(3), pages 641-654, March.
    2. Aliasghar Montazar & H. Riazi & S. Behbahani, 2010. "Conjunctive Water Use Planning in an Irrigation Command Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 577-596, February.
    3. Vedula, S. & Mujumdar, P.P. & Chandra Sekhar, G., 2005. "Conjunctive use modeling for multicrop irrigation," Agricultural Water Management, Elsevier, vol. 73(3), pages 193-221, May.
    4. Azaiez, M. N., 2002. "A model for conjunctive use of ground and surface water with opportunity costs," European Journal of Operational Research, Elsevier, vol. 143(3), pages 611-624, December.
    5. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    6. M. Tabari & Jaber Soltani, 2013. "Multi-Objective Optimal Model for Conjunctive Use Management Using SGAs and NSGA-II Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 37-53, January.
    7. Khare, Deepak & Jat, M.K. & Sunder, J. Deva, 2007. "Assessment of water resources allocation options: Conjunctive use planning in a link canal command," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 487-506.
    8. Saleh, Yahya & Gürler, Ülkü & Berk, Emre, 2011. "Centralized and decentralized management of groundwater with multiple users," European Journal of Operational Research, Elsevier, vol. 215(1), pages 244-256, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garg, N.K. & Dadhich, Sushmita M., 2014. "A proposed method to determine yield response factors of different crops under deficit irrigation using inverse formulation approach," Agricultural Water Management, Elsevier, vol. 137(C), pages 68-74.
    2. Azaiez, M. N., 2002. "A model for conjunctive use of ground and surface water with opportunity costs," European Journal of Operational Research, Elsevier, vol. 143(3), pages 611-624, December.
    3. Juan, J. A. de & Tarjuelo, J. M. & Valiente, M. & Garcia, P., 1996. "Model for optimal cropping patterns within the farm based on crop water production functions and irrigation uniformity I: Development of a decision model," Agricultural Water Management, Elsevier, vol. 31(1-2), pages 115-143, June.
    4. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    5. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    6. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    7. Ajay Singh & Sudhindra Panda, 2013. "Optimization and Simulation Modelling for Managing the Problems of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3421-3431, July.
    8. Axelrad, Gilad & Feinerman, Eli, 2007. "Regional Planning Of Wastewater Reuse For Irrigation And River Rehabilitation," Discussion Papers 7141, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    9. Tran, Lap Doc & Schilizzi, Steven & Chalak, Morteza & Kingwell, Ross, 2011. "Optimizing competitive uses of water for irrigation and fisheries," Agricultural Water Management, Elsevier, vol. 101(1), pages 42-51.
    10. Gilad Axelrad & Eli Feinerman, 2009. "Regional Planning of Wastewater Reuse for Irrigation and River Rehabilitation," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 105-131, February.
    11. Hajilal, M. S. & Rao, N. H. & Sarma, P. B. S., 1998. "Real time operation of reservoir based canal irrigation systems," Agricultural Water Management, Elsevier, vol. 38(2), pages 103-122, December.
    12. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    13. Shi, Rongchao & Tong, Ling & Ding, Risheng & Du, Taisheng & Shukla, Manoj Kumar, 2021. "Modeling kernel weight of hybrid maize seed production with different water regimes," Agricultural Water Management, Elsevier, vol. 250(C).
    14. Wang, Yufeng & Kang, Shaozhong & Li, Fusheng & Zhang, Xiaotao, 2021. "Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Ghazali, Mahboubeh & Honar, Tooraj & Nikoo, Mohammad Reza, 2018. "A hybrid TOPSIS-agent-based framework for reducing the water demand requested by stakeholders with considering the agents’ characteristics and optimization of cropping pattern," Agricultural Water Management, Elsevier, vol. 199(C), pages 71-85.
    16. Domínguez, Alfonso & Schwartz, Robert C. & Pardo, José J. & Guerrero, Bridget & Bell, Jourdan M. & Colaizzi, Paul D. & Louis Baumhardt, R., 2022. "Center pivot irrigation capacity effects on maize yield and profitability in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    18. Robinson, Sherman & Mason d'Croz, Daniel & Islam, Shahnila & Sulser, Timothy B. & Robertson, Richard D. & Zhu, Tingju & Gueneau, Arthur & Pitois, Gauthier & Rosegrant, Mark W., 2015. "The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3:," IFPRI discussion papers 1483, International Food Policy Research Institute (IFPRI).
    19. White, Leroy & Smith, Honora & Currie, Christine, 2011. "OR in developing countries: A review," European Journal of Operational Research, Elsevier, vol. 208(1), pages 1-11, January.
    20. A J Higgins & C J Miller & A A Archer & T Ton & C S Fletcher & R R J McAllister, 2010. "Challenges of operations research practice in agricultural value chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 964-973, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:133:y:2001:i:3:p:653-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.