IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v106y1998i2-3p522-538.html
   My bibliography  Save this article

Relaxed tours and path ejections for the traveling salesman problem

Author

Listed:
  • Rego, Cesar

Abstract

No abstract is available for this item.

Suggested Citation

  • Rego, Cesar, 1998. "Relaxed tours and path ejections for the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 522-538, April.
  • Handle: RePEc:eee:ejores:v:106:y:1998:i:2-3:p:522-538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(97)00288-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Glover & J. Hultz & D. Klingman & J. Stutz, 1978. "Generalized Networks: A Fundamental Computer-Based Planning Tool," Management Science, INFORMS, vol. 24(12), pages 1209-1220, August.
    2. Laguna, Manuel & Kelly, James P. & Gonzalez-Velarde, JoseLuis & Glover, Fred, 1995. "Tabu search for the multilevel generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 82(1), pages 176-189, April.
    3. Jacques Renaud & Fayez F. Boctor & Gilbert Laporte, 1996. "A Fast Composite Heuristic for the Symmetric Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 134-143, May.
    4. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    5. Ulrich Dorndorf & Erwin Pesch, 1994. "Fast Clustering Algorithms," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 141-153, May.
    6. Michael Held & Richard M. Karp, 1970. "The Traveling-Salesman Problem and Minimum Spanning Trees," Operations Research, INFORMS, vol. 18(6), pages 1138-1162, December.
    7. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    2. Colin Osterman & César Rego, 2016. "A k-level data structure for large-scale traveling salesman problems," Annals of Operations Research, Springer, vol. 244(2), pages 583-601, September.
    3. César Rego & Fred Glover, 2010. "Ejection chain and filter-and-fan methods in combinatorial optimization," Annals of Operations Research, Springer, vol. 175(1), pages 77-105, March.
    4. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    5. Antonio Frangioni & Emiliano Necciari & Maria Grazia Scutellà, 2004. "A Multi-Exchange Neighborhood for Minimum Makespan Parallel Machine Scheduling Problems," Journal of Combinatorial Optimization, Springer, vol. 8(2), pages 195-220, June.
    6. Rego, César & Gamboa, Dorabela & Glover, Fred & Osterman, Colin, 2011. "Traveling salesman problem heuristics: Leading methods, implementations and latest advances," European Journal of Operational Research, Elsevier, vol. 211(3), pages 427-441, June.
    7. Qu, Hong & Yi, Zhang & Tang, HuaJin, 2007. "A columnar competitive model for solving multi-traveling salesman problem," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 1009-1019.
    8. Gamboa, Dorabela & Rego, Cesar & Glover, Fred, 2005. "Data structures and ejection chains for solving large-scale traveling salesman problems," European Journal of Operational Research, Elsevier, vol. 160(1), pages 154-171, January.
    9. Rego, Cesar, 2001. "Technical note on the paper "An empirical study of a new metaheuristic for the traveling salesman problem" (by Shigeru Tsubakitani, James R. Evans, European Journal of Operational Research 1," European Journal of Operational Research, Elsevier, vol. 129(2), pages 456-459, March.
    10. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    11. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    2. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    3. Shengbin Wang & Weizhen Rao & Yuan Hong, 2020. "A distance matrix based algorithm for solving the traveling salesman problem," Operational Research, Springer, vol. 20(3), pages 1505-1542, September.
    4. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    5. Hongsheng Zhong & Randolph W. Hall & Maged Dessouky, 2007. "Territory Planning and Vehicle Dispatching with Driver Learning," Transportation Science, INFORMS, vol. 41(1), pages 74-89, February.
    6. Ninio, Matan & Schneider, Johannes J., 2005. "Weight annealing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 649-666.
    7. Elena Nechita & Gloria Cerasela Crişan & Laszlo Barna Iantovics & Yitong Huang, 2020. "On the Resilience of Ant Algorithms. Experiment with Adapted MMAS on TSP," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    8. Yannis Marinakis & Athanasios Migdalas & Panos M. Pardalos, 2005. "A Hybrid Genetic—GRASP Algorithm Using Lagrangean Relaxation for the Traveling Salesman Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 311-326, December.
    9. L Vogt & C A Poojari & J E Beasley, 2007. "A tabu search algorithm for the single vehicle routing allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 467-480, April.
    10. J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
    11. Renaud, Jacques & Boctor, Fayez F., 2002. "A sweep-based algorithm for the fleet size and mix vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 140(3), pages 618-628, August.
    12. S. Irnich, 2008. "A Unified Modeling and Solution Framework for Vehicle Routing and Local Search-Based Metaheuristics," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 270-287, May.
    13. César Rego & Fred Glover, 2010. "Ejection chain and filter-and-fan methods in combinatorial optimization," Annals of Operations Research, Springer, vol. 175(1), pages 77-105, March.
    14. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    15. Chris Walshaw, 2002. "A Multilevel Approach to the Travelling Salesman Problem," Operations Research, INFORMS, vol. 50(5), pages 862-877, October.
    16. Michael Brusco & Hans-Friedrich Köhn, 2008. "Optimal Partitioning of a Data Set Based on the p-Median Model," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 89-105, March.
    17. Zi-bin Jiang & Qiong Yang, 2016. "A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    18. Stefan Poikonen & Bruce Golden, 2020. "The Mothership and Drone Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 249-262, April.
    19. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    20. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:106:y:1998:i:2-3:p:522-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.