IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v488y2024ics0304380023003174.html
   My bibliography  Save this article

Modelling assessment of how small-scale vertical movements of infectious sea lice larvae can affect their large-scale distribution in fjordic systems

Author

Listed:
  • Garnier, Soizic
  • Moriarty, Meadhbh
  • Murray, Rory O'Hara
  • Gallego, Alejandro
  • Murray, Alexander G.

Abstract

Sea lice are ectoparasites that can be found in high numbers in and around salmon farms, where they are a threat to fish health and can induce high aquacultural costs. Large numbers of suitable hosts facilitate the infection and subsequent release of their planktonic larvae in the surrounding environment where they can potentially infect wild salmonids, including migrating juvenile fish (smolts). Investigating sea lice spatial distribution is generally done using coupled hydrodynamic and particle tracking models. The quality of these numerical tools is critical to identify areas of higher infection risk to valuable wild salmon populations and thus support sustainable salmon aquaculture. While the transport of salmon lice is mainly affected by physical processes, biological behaviours such as vertical swimming can also play an important role. However, a review of previous sea lice studies shows no clear consensus on their swimming abilities and the parameters implemented in sea lice dispersion modelling. Here, we focus on the Diel Vertical Migration (DVM) behaviour, a vertical migration that sea lice perform within a daily cycle. Our sensitivity study of the infectious copepodid phase of sea lice highlights how their retention potential and spatial distribution within a water body are affected by their vertical swimming velocity and maximum swimming depth. In a fjordic system (Loch Linnhe on the West Coast of Scotland), the vertical position of sea lice can affect their horizontal trajectory due to the two-layer exchange flow of the estuarine circulation. At the surface, transport is mainly due to the wind driven circulation, and the residual seaward current. Lower in the water column, the saltier shelf water is drawn into the sea loch. This can potentially increase the retention of sea lice if they dive deep enough to reach those opposing subtidal currents. Therefore, lack of confidence in sea lice DVM parameterisation may introduce inaccuracy in modelled sea lice distribution. Effective sea lice management in aquaculture would benefit from more observational data like farm sea lice count, sea lice swimming laboratory observations, field observation of sea lice vertical distribution and accurate sea lice quantification in the field. This would help to reduce uncertainties derived from sea lice vertical swimming behaviour parameterisation in lice dispersal models.

Suggested Citation

  • Garnier, Soizic & Moriarty, Meadhbh & Murray, Rory O'Hara & Gallego, Alejandro & Murray, Alexander G., 2024. "Modelling assessment of how small-scale vertical movements of infectious sea lice larvae can affect their large-scale distribution in fjordic systems," Ecological Modelling, Elsevier, vol. 488(C).
  • Handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003174
    DOI: 10.1016/j.ecolmodel.2023.110587
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023003174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.