IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v466y2022ics0304380021004087.html
   My bibliography  Save this article

A structure-preserving model for the dynamics of estuarine ecosystems and its application in western Patagonia fjords

Author

Listed:
  • Mata Almonacid, Pablo
  • Medel, Carolina

Abstract

The Patagonian fjords of southern Chile are one of the largest and least-studied estuarine regions in the world. Its water bodies display a wide range in hydrodynamic and biogeochemical behavior, a function of diverse morphology/bathymetry and range of inputs from continental runoff. Numerical models, which are an essential tool in understanding the potential impacts of human or climate-driven perturbations on complex ecosystems, have not been applied in this zone. We present a novel model for simulating ecological processes in data-sparse marine water bodies, as a trade-off between model complexity and parsimony, based on a two-layer description of the water column. The upper layer represents the euphotic zone, where a NPZD model (Nutrients/Phytoplankton/Zooplankton/Detritus) is used to simulate the dynamics of a mass-conserving pelagic food web. Intense wind driven water column mixing, inducing an upward flux of nutrients that boosts high rates of primary production, is described by a time-dependent Gaussian pulse. Mass losses due to detritus sinking are also included. The ecosystem dynamics are represented by an externally forced, non-autonomous system of ordinary differential equations, characterized by strictly positive trajectories. This system is no longer mass-conserving. Therefore a structure-preserving time integrator, based on a splitting composition technique, was customized for solving the system’s equations. It is cast as a three-step algorithm and provides an exact estimation of biomass fluxes. In the first step, a modified Patankar–Runge–Kutta scheme (Burchard et al., 2003) is used to solve the unforced NPZD system. The second and third steps consider the effects of nutrient pulse and sinking detritus. Finally, genetic algorithms are used for model calibration, with the proposed model applied to previous published observations on an unusual winter bloom of dinoflagellates in an Austral fjord (Montero et al., 2017). Optimal parameters characterizing the biomass fluxes during the bloom were determined, as well as the time scales and mass/volume associated with primary production. To the best of the authors’ knowledge, this is the first attempt to model biogeochemical processes in the fjords of this region.

Suggested Citation

  • Mata Almonacid, Pablo & Medel, Carolina, 2022. "A structure-preserving model for the dynamics of estuarine ecosystems and its application in western Patagonia fjords," Ecological Modelling, Elsevier, vol. 466(C).
  • Handle: RePEc:eee:ecomod:v:466:y:2022:i:c:s0304380021004087
    DOI: 10.1016/j.ecolmodel.2021.109871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021004087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McDonald, C.P. & Bennington, V. & Urban, N.R. & McKinley, G.A., 2012. "1-D test-bed calibration of a 3-D Lake Superior biogeochemical model," Ecological Modelling, Elsevier, vol. 225(C), pages 115-126.
    2. Heinle, A. & Slawig, T., 2013. "Internal dynamics of NPZD type ecosystem models," Ecological Modelling, Elsevier, vol. 254(C), pages 33-42.
    3. Portilla, E. & Tett, P. & Gillibrand, P.A. & Inall, Mark, 2009. "Description and sensitivity analysis for the LESV model: Water quality variables and the balance of organisms in a fjordic region of restricted exchange," Ecological Modelling, Elsevier, vol. 220(18), pages 2187-2205.
    4. Heinle, A. & Slawig, T., 2013. "Impact of parameter choice on the dynamics of NPZD type ecosystem models," Ecological Modelling, Elsevier, vol. 267(C), pages 93-101.
    5. Arhonditsis, George B. & Qian, Song S. & Stow, Craig A. & Lamon, E. Conrad & Reckhow, Kenneth H., 2007. "Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake," Ecological Modelling, Elsevier, vol. 208(2), pages 215-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Jang-Geun & Lippmann, Thomas C. & Harvey, Elizabeth L., 2023. "Analytical population dynamics underlying harmful algal blooms triggered by prey avoidance," Ecological Modelling, Elsevier, vol. 481(C).
    2. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    3. Lindim, C. & Pinho, J.L. & Vieira, J.M.P., 2011. "Analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2485-2494.
    4. Xu, Yanhong & Peng, Hong & Yang, Yinqun & Zhang, Wanshun & Wang, Shuangling, 2014. "A cumulative eutrophication risk evaluation method based on a bioaccumulation model," Ecological Modelling, Elsevier, vol. 289(C), pages 77-85.
    5. Kumar, Vijay & Kumari, Beena, 2015. "Mathematical modelling of the seasonal variability of plankton and forage fish in the Gulf of Kachchh," Ecological Modelling, Elsevier, vol. 313(C), pages 237-250.
    6. Kim, Dong-Kyun & Zhang, Weitao & Rao, Yerubandi R. & Watson, Sue & Mugalingam, Shan & Labencki, Tanya & Dittrich, Maria & Morley, Andrew & Arhonditsis, George B., 2013. "Improving the representation of internal nutrient recycling with phosphorus mass balance models: A case study in the Bay of Quinte, Ontario, Canada," Ecological Modelling, Elsevier, vol. 256(C), pages 53-68.
    7. Zhang, Weitao & Arhonditsis, George B., 2009. "A Bayesian hierarchical framework for calibrating aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 220(18), pages 2142-2161.
    8. McDonald, C.P. & Bennington, V. & Urban, N.R. & McKinley, G.A., 2012. "1-D test-bed calibration of a 3-D Lake Superior biogeochemical model," Ecological Modelling, Elsevier, vol. 225(C), pages 115-126.
    9. Priyadarshi, Anupam & Chandra, Ram & Kishi, Michio J. & Smith, S.Lan & Yamazaki, Hidekatsu, 2022. "Understanding plankton ecosystem dynamics under realistic micro-scale variability requires modeling at least three trophic levels," Ecological Modelling, Elsevier, vol. 467(C).
    10. Yang, Likun & Zhao, Xinhua & Peng, Sen & Li, Xia, 2016. "Water quality assessment analysis by using combination of Bayesian and genetic algorithm approach in an urban lake, China," Ecological Modelling, Elsevier, vol. 339(C), pages 77-88.
    11. Vassilis Z. Antonopoulos & Soultana K. Gianniou, 2023. "Energy Budget, Water Quality Parameters and Primary Production Modeling in Lake Volvi in Northern Greece," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    12. Zhang, Weitao & Kim, Dong-Kyun & Rao, Yerubandi R. & Watson, Sue & Mugalingam, Shan & Labencki, Tanya & Dittrich, Maria & Morley, Andrew & Arhonditsis, George B., 2013. "Can simple phosphorus mass balance models guide management decisions? A case study in the Bay of Quinte, Ontario, Canada," Ecological Modelling, Elsevier, vol. 257(C), pages 66-79.
    13. Sawyer, Jennifer M. & Arts, Michael T. & Arhonditsis, George & Diamond, Miriam L., 2016. "A general model of polyunsaturated fatty acid (PUFA) uptake, loss and transformation in freshwater fish," Ecological Modelling, Elsevier, vol. 323(C), pages 96-105.
    14. Heinle, A. & Slawig, T., 2013. "Impact of parameter choice on the dynamics of NPZD type ecosystem models," Ecological Modelling, Elsevier, vol. 267(C), pages 93-101.
    15. Katin, Alexey & Giudice, Dario Del & Hall, Nathan S. & Paerl, Hans W. & Obenour, Daniel R., 2021. "Simulating algal dynamics within a Bayesian framework to evaluate controls on estuary productivity," Ecological Modelling, Elsevier, vol. 447(C).
    16. Rigosi, Anna & Rueda, Francisco J., 2012. "Propagation of uncertainty in ecological models of reservoirs: From physical to population dynamic predictions," Ecological Modelling, Elsevier, vol. 247(C), pages 199-209.
    17. Ramin, Maryam & Labencki, Tanya & Boyd, Duncan & Trolle, Dennis & Arhonditsis, George B., 2012. "A Bayesian synthesis of predictions from different models for setting water quality criteria," Ecological Modelling, Elsevier, vol. 242(C), pages 127-145.
    18. Alessio C. Spassiani & Matthew S. Mason & Vincent Y. S. Cheng, 2023. "An Australian convective wind gust climatology using Bayesian hierarchical modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2037-2067, September.
    19. Li, Yuzhao & Liu, Yong & Zhao, Lei & Hastings, Alan & Guo, Huaicheng, 2015. "Exploring change of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phytoplankton model," Ecological Modelling, Elsevier, vol. 313(C), pages 137-148.
    20. Hosack, Geoffrey R. & Eldridge, Peter M., 2009. "Do microbial processes regulate the stability of a coral atoll's enclosed pelagic ecosystem?," Ecological Modelling, Elsevier, vol. 220(20), pages 2665-2682.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:466:y:2022:i:c:s0304380021004087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.