IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v447y2021ics0304380021000685.html
   My bibliography  Save this article

Simulating algal dynamics within a Bayesian framework to evaluate controls on estuary productivity

Author

Listed:
  • Katin, Alexey
  • Giudice, Dario Del
  • Hall, Nathan S.
  • Paerl, Hans W.
  • Obenour, Daniel R.

Abstract

The Neuse River Estuary (North Carolina, USA) is a valuable ecosystem that has been affected by the expansion of agricultural and urban watershed activities over the last several decades. Eutrophication, as a consequence of enhanced anthropogenic nutrient loadings, has promoted high phytoplankton biomass, hypoxia, and fish kills. This study compares and contrasts three models to better understand how nutrient loading and other environmental factors control phytoplankton biomass, as chl-a, over time. The first model is purely statistical, while the second model mechanistically simulates both chl-a and nitrogen dynamics, and the third additionally simulates phosphorus. The models are calibrated to a multi-decadal dataset (1997–2018) within a Bayesian framework, which systematically incorporates prior information and accounts for uncertainties. All three models explain over one third of log-transformed chl-a variability, with the mechanistic models additionally explaining the majority of the variability in bioavailable nutrients (R2 > 0.5). By disentangling the influences of riverine nutrient concentrations, flows, and loadings on estuary productivity we find that concentration reductions, rather than total loading reductions, are the key to controlling estuary chl-a levels. The third model indicates that the estuary, even in its upstream portion, is rarely phosphorus limited, and will continue to be mostly nitrogen limited even under a 30% phosphorus reduction scenario. This model also predicts that a 10% change in nitrogen loading (flow held constant) will produce an approximate 4.3% change in estuary chl-a concentration, while the statistical model suggests a larger (10%) effect. Overall, by including a more detailed representation of environmental factors controlling algal growth, the mechanistic models generate chl-a forecasts with less uncertainty across a range of nutrient loading scenarios. Methodologically, this study advances the use of Bayesian methods for modeling the eutrophication dynamics of an estuarine system over a multi-decadal period.

Suggested Citation

  • Katin, Alexey & Giudice, Dario Del & Hall, Nathan S. & Paerl, Hans W. & Obenour, Daniel R., 2021. "Simulating algal dynamics within a Bayesian framework to evaluate controls on estuary productivity," Ecological Modelling, Elsevier, vol. 447(C).
  • Handle: RePEc:eee:ecomod:v:447:y:2021:i:c:s0304380021000685
    DOI: 10.1016/j.ecolmodel.2021.109497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021000685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuzhao & Liu, Yong & Zhao, Lei & Hastings, Alan & Guo, Huaicheng, 2015. "Exploring change of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phytoplankton model," Ecological Modelling, Elsevier, vol. 313(C), pages 137-148.
    2. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    3. Fiechter, J. & Herbei, R. & Leeds, W. & Brown, J. & Milliff, R. & Wikle, C. & Moore, A. & Powell, T., 2013. "A Bayesian parameter estimation method applied to a marine ecosystem model for the coastal Gulf of Alaska," Ecological Modelling, Elsevier, vol. 258(C), pages 122-133.
    4. Arhonditsis, George B. & Qian, Song S. & Stow, Craig A. & Lamon, E. Conrad & Reckhow, Kenneth H., 2007. "Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake," Ecological Modelling, Elsevier, vol. 208(2), pages 215-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rolando Rubilar-Torrealba & Lisandro Fermin & Soledad Torres, 2025. "Modeling Maximum drawdown Records with Piecewise Deterministic Markov Processe in Capital Markets," Papers 2503.23221, arXiv.org.
    2. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    3. Belém Barbosa & José Ramón Saura & Dag Bennett, 2024. "How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses," The Journal of Technology Transfer, Springer, vol. 49(1), pages 69-103, February.
    4. Serrouya, R. & Dickie, M. & DeMars, C. & Wittmann, M.J. & Boutin, S., 2020. "Predicting the effects of restoring linear features on woodland caribou populations," Ecological Modelling, Elsevier, vol. 416(C).
    5. Xu, Yanhong & Peng, Hong & Yang, Yinqun & Zhang, Wanshun & Wang, Shuangling, 2014. "A cumulative eutrophication risk evaluation method based on a bioaccumulation model," Ecological Modelling, Elsevier, vol. 289(C), pages 77-85.
    6. Zadoki Tabo & Chester Kalinda & Lutz Breuer & Christian Albrecht, 2023. "Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    7. Zhang, Weitao & Arhonditsis, George B., 2009. "A Bayesian hierarchical framework for calibrating aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 220(18), pages 2142-2161.
    8. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    9. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    10. Mariano Méndez-Suárez & Ignacio Danvila-del-Valle, 2023. "Negative Word of Mouth (NWOM) using Compartmental Epidemiological Models in Banking Digital Transformation," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 17(1), March.
    11. Alex Root, 2019. "Mathematical Modeling of The Challenge to Detect Pancreatic Adenocarcinoma Early with Biomarkers," Challenges, MDPI, vol. 10(1), pages 1-15, April.
    12. McDonald, C.P. & Bennington, V. & Urban, N.R. & McKinley, G.A., 2012. "1-D test-bed calibration of a 3-D Lake Superior biogeochemical model," Ecological Modelling, Elsevier, vol. 225(C), pages 115-126.
    13. Yang, Likun & Zhao, Xinhua & Peng, Sen & Li, Xia, 2016. "Water quality assessment analysis by using combination of Bayesian and genetic algorithm approach in an urban lake, China," Ecological Modelling, Elsevier, vol. 339(C), pages 77-88.
    14. Chevallier, Damien & Mourrain, Baptiste & Girondot, Marc, 2020. "Modelling leatherback biphasic indeterminate growth using a modified Gompertz equation," Ecological Modelling, Elsevier, vol. 426(C).
    15. Turner, Rolf & Banerjee, Pradeep & Shahlori, Rayomand, 2014. "Optimal Asset Pricing," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i11).
    16. Carturan, Bruno S. & Siewe, Nourridine & Cobbold, Christina A. & Tyson, Rebecca C., 2023. "Bumble bee pollination and the wildflower/crop trade-off: When do wildflower enhancements improve crop yield?," Ecological Modelling, Elsevier, vol. 484(C).
    17. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    18. Venolia, Celeste T. & Lavaud, Romain & Green-Gavrielidis, Lindsay A. & Thornber, Carol & Humphries, Austin T., 2020. "Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory," Ecological Modelling, Elsevier, vol. 430(C).
    19. Lecorvaisier, Florian & Pontier, Dominique & Soubeyrand, Benoît & Fouchet, David, 2024. "Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria," Ecological Modelling, Elsevier, vol. 487(C).
    20. Karim, Md Aktar Ul & Bhagat, Supriya Ramdas & Bhowmick, Amiya Ranjan, 2022. "Empirical detection of parameter variation in growth curve models using interval specific estimators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:447:y:2021:i:c:s0304380021000685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.