IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v447y2021ics0304380021000685.html
   My bibliography  Save this article

Simulating algal dynamics within a Bayesian framework to evaluate controls on estuary productivity

Author

Listed:
  • Katin, Alexey
  • Giudice, Dario Del
  • Hall, Nathan S.
  • Paerl, Hans W.
  • Obenour, Daniel R.

Abstract

The Neuse River Estuary (North Carolina, USA) is a valuable ecosystem that has been affected by the expansion of agricultural and urban watershed activities over the last several decades. Eutrophication, as a consequence of enhanced anthropogenic nutrient loadings, has promoted high phytoplankton biomass, hypoxia, and fish kills. This study compares and contrasts three models to better understand how nutrient loading and other environmental factors control phytoplankton biomass, as chl-a, over time. The first model is purely statistical, while the second model mechanistically simulates both chl-a and nitrogen dynamics, and the third additionally simulates phosphorus. The models are calibrated to a multi-decadal dataset (1997–2018) within a Bayesian framework, which systematically incorporates prior information and accounts for uncertainties. All three models explain over one third of log-transformed chl-a variability, with the mechanistic models additionally explaining the majority of the variability in bioavailable nutrients (R2 > 0.5). By disentangling the influences of riverine nutrient concentrations, flows, and loadings on estuary productivity we find that concentration reductions, rather than total loading reductions, are the key to controlling estuary chl-a levels. The third model indicates that the estuary, even in its upstream portion, is rarely phosphorus limited, and will continue to be mostly nitrogen limited even under a 30% phosphorus reduction scenario. This model also predicts that a 10% change in nitrogen loading (flow held constant) will produce an approximate 4.3% change in estuary chl-a concentration, while the statistical model suggests a larger (10%) effect. Overall, by including a more detailed representation of environmental factors controlling algal growth, the mechanistic models generate chl-a forecasts with less uncertainty across a range of nutrient loading scenarios. Methodologically, this study advances the use of Bayesian methods for modeling the eutrophication dynamics of an estuarine system over a multi-decadal period.

Suggested Citation

  • Katin, Alexey & Giudice, Dario Del & Hall, Nathan S. & Paerl, Hans W. & Obenour, Daniel R., 2021. "Simulating algal dynamics within a Bayesian framework to evaluate controls on estuary productivity," Ecological Modelling, Elsevier, vol. 447(C).
  • Handle: RePEc:eee:ecomod:v:447:y:2021:i:c:s0304380021000685
    DOI: 10.1016/j.ecolmodel.2021.109497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021000685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuzhao & Liu, Yong & Zhao, Lei & Hastings, Alan & Guo, Huaicheng, 2015. "Exploring change of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phytoplankton model," Ecological Modelling, Elsevier, vol. 313(C), pages 137-148.
    2. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    3. Fiechter, J. & Herbei, R. & Leeds, W. & Brown, J. & Milliff, R. & Wikle, C. & Moore, A. & Powell, T., 2013. "A Bayesian parameter estimation method applied to a marine ecosystem model for the coastal Gulf of Alaska," Ecological Modelling, Elsevier, vol. 258(C), pages 122-133.
    4. Arhonditsis, George B. & Qian, Song S. & Stow, Craig A. & Lamon, E. Conrad & Reckhow, Kenneth H., 2007. "Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake," Ecological Modelling, Elsevier, vol. 208(2), pages 215-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    2. Lindim, C. & Pinho, J.L. & Vieira, J.M.P., 2011. "Analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2485-2494.
    3. Rolando Rubilar-Torrealba & Lisandro Fermin & Soledad Torres, 2025. "Modeling Maximum drawdown Records with Piecewise Deterministic Markov Processe in Capital Markets," Papers 2503.23221, arXiv.org.
    4. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    5. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    6. Belém Barbosa & José Ramón Saura & Dag Bennett, 2024. "How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses," The Journal of Technology Transfer, Springer, vol. 49(1), pages 69-103, February.
    7. Xu, Zhihao & Yin, Xinan & Yang, Zhifeng & Cai, Yanpeng & Sun, Tao, 2016. "New model to assessing nutrient assimilative capacity in plant-dominated lakes: Considering ecological effects of hydrological changes," Ecological Modelling, Elsevier, vol. 332(C), pages 94-102.
    8. Overstall, Antony M. & Woods, David C. & Martin, Kieran J., 2019. "Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 126-142.
    9. Serrouya, R. & Dickie, M. & DeMars, C. & Wittmann, M.J. & Boutin, S., 2020. "Predicting the effects of restoring linear features on woodland caribou populations," Ecological Modelling, Elsevier, vol. 416(C).
    10. Xu, Yanhong & Peng, Hong & Yang, Yinqun & Zhang, Wanshun & Wang, Shuangling, 2014. "A cumulative eutrophication risk evaluation method based on a bioaccumulation model," Ecological Modelling, Elsevier, vol. 289(C), pages 77-85.
    11. Zadoki Tabo & Chester Kalinda & Lutz Breuer & Christian Albrecht, 2023. "Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    12. Moore, Christopher M. & Catella, Samantha A. & Abbott, Karen C., 2018. "Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback," Ecological Modelling, Elsevier, vol. 368(C), pages 191-197.
    13. Kim, Dong-Kyun & Zhang, Weitao & Rao, Yerubandi R. & Watson, Sue & Mugalingam, Shan & Labencki, Tanya & Dittrich, Maria & Morley, Andrew & Arhonditsis, George B., 2013. "Improving the representation of internal nutrient recycling with phosphorus mass balance models: A case study in the Bay of Quinte, Ontario, Canada," Ecological Modelling, Elsevier, vol. 256(C), pages 53-68.
    14. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.
    15. Zhang, Weitao & Arhonditsis, George B., 2009. "A Bayesian hierarchical framework for calibrating aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 220(18), pages 2142-2161.
    16. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    17. Cécile Cathalot & Erwan G. Roussel & Antoine Perhirin & Vanessa Creff & Jean-Pierre Donval & Vivien Guyader & Guillaume Roullet & Jonathan Gula & Christian Tamburini & Marc Garel & Anne Godfroy & Pier, 2021. "Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    18. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    19. Stahl, Gerhard & Wang, Shaohui & Wendt, Markus, 2011. "Validate Correlation of an ESG: Treasury Yields across," Hannover Economic Papers (HEP) dp-476, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    20. Mariano Méndez-Suárez & Ignacio Danvila-del-Valle, 2023. "Negative Word of Mouth (NWOM) using Compartmental Epidemiological Models in Banking Digital Transformation," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 17(1), March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:447:y:2021:i:c:s0304380021000685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.