IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v442y2021ics0304380020304683.html
   My bibliography  Save this article

Simulating the effects of thinning and species mixing on stands of oak (Quercus petraea (Matt.) Liebl./Quercus robur L.) and pine (Pinus sylvestris L.) across Europe

Author

Listed:
  • Engel, Markus
  • Vospernik, Sonja
  • Toïgo, Maude
  • Morin, Xavier
  • Tomao, Antonio
  • Trotta, Carlo
  • Steckel, Mathias
  • Barbati, Anna
  • Nothdurft, Arne
  • Pretzsch, Hans
  • del Rio, Miren
  • Skrzyszewski, Jerzy
  • Ponette, Quentin
  • Löf, Magnus
  • Jansons, Āris
  • Brazaitis, Gediminas

Abstract

Tree species mixing of oak (Quercus petraea (Matt.) Liebl./Quercus robur L.) and pine (Pinus sylvestris L.) has been shown to have positive effects on ecosystem service provision. From a management perspective, however, it is still uncertain which thinning regime provides the highest possible productivity of mixed oak–pine forests in the long term. Because of a lack of empirical studies dealing with thinning and species mixing effects on oak–pine forests, we simulated forest growth in order to test which thinning type and intensity may provide the highest productivity in the long-term. To achieve this, we simulated the growth of pure and mixed stands of oak and pine for 100 years in 23 triplets located on an ecological gradient across Europe. For this purpose, we applied four different growth simulators and compared their results: the distance-independent single-tree simulator PROGNAUS, the distance-dependent single-tree simulator SILVA, the gap model ForCEEPS, and the process-based simulator 3D-CMCC-FEM. We investigated the effects of species mixing and thinning from the upper (thinning from above) and lower tail (thinning from below) of the diameter distribution by reducing the stand basal area to 50 and 80% of the maximum basal area. We compared simulated results of the relative volume productivity of mixed versus pure stands and of thinned versus unthinned stands to empirical results previously obtained on the same set of triplets. Simulated relative volume productivity ranged between 61 and 156%, although extremes of 10% and of 300% could be observed. We found the relative volume productivity to be influenced by stand age, but not by stand density, except for PROGNAUS. Relative volume productivity did not increase with the site water supply of the triplet location. Highest long-term productivity for oak, pine and oak–pine stands can be expected in consequence of thinning from above, but the effect of thinning intensity differed between simulators. Thinning effects were positively affected by stand density, but not by stand age, except for thinning from above predicted by PROGNAUS. Predicted thinning effects showed good approximation of results from thinning experiments for oak, but not for pine stands. We hypothesize the results might be caused by the insufficient simulator representation of climate and its interaction with other site variables and stand structure. Further work is needed to reduce the revealed limitations of the existing growth models, as we currently see no alternative to such kind of studies and simulators.

Suggested Citation

  • Engel, Markus & Vospernik, Sonja & Toïgo, Maude & Morin, Xavier & Tomao, Antonio & Trotta, Carlo & Steckel, Mathias & Barbati, Anna & Nothdurft, Arne & Pretzsch, Hans & del Rio, Miren & Skrzyszewski, , 2021. "Simulating the effects of thinning and species mixing on stands of oak (Quercus petraea (Matt.) Liebl./Quercus robur L.) and pine (Pinus sylvestris L.) across Europe," Ecological Modelling, Elsevier, vol. 442(C).
  • Handle: RePEc:eee:ecomod:v:442:y:2021:i:c:s0304380020304683
    DOI: 10.1016/j.ecolmodel.2020.109406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lars Gamfeldt & Tord Snäll & Robert Bagchi & Micael Jonsson & Lena Gustafsson & Petter Kjellander & María C. Ruiz-Jaen & Mats Fröberg & Johan Stendahl & Christopher D. Philipson & Grzegorz Mikusiński , 2013. "Higher levels of multiple ecosystem services are found in forests with more tree species," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    2. Collalti, Alessio & Perugini, Lucia & Santini, Monia & Chiti, Tommaso & Nolè, Angelo & Matteucci, Giorgio & Valentini, Riccardo, 2014. "A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy," Ecological Modelling, Elsevier, vol. 272(C), pages 362-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2023. "Increasing Paper and Cardboard Recycling: Impacts on the Forest Sector and Carbon Emissions," Post-Print hal-04690101, HAL.
    2. Innangi, Michele & Balestrieri, Rosario & Danise, Tiziana & d’Alessandro, Francesco & Fioretto, Antonietta, 2019. "From soil to bird community: A Partial Least Squares approach to investigate a natural wooded area surrounded by urban patchwork (Astroni crater, southern Italy)," Ecological Modelling, Elsevier, vol. 394(C), pages 1-10.
    3. Zanchi, Giuliana & Belyazid, Salim & Akselsson, Cecilia & Yu, Lin, 2014. "Modelling the effects of management intensification on multiple forest services: a Swedish case study," Ecological Modelling, Elsevier, vol. 284(C), pages 48-59.
    4. Rachele Venanzi & Francesco Latterini & Walter Stefanoni & Damiano Tocci & Rodolfo Picchio, 2022. "Variations of Soil Physico-Chemical and Biological Features after Logging Using Two Different Ground-Based Extraction Methods in a Beech High Forest—A Case Study," Land, MDPI, vol. 11(3), pages 1-14, March.
    5. Jacqueline Loos & Henrik Von Wehrden, 2018. "Beyond Biodiversity Conservation: Land Sharing Constitutes Sustainable Agriculture in European Cultural Landscapes," Sustainability, MDPI, vol. 10(5), pages 1-11, May.
    6. Mohamed Ali Mohamed, 2021. "An Assessment of Forest Cover Change and Its Driving Forces in the Syrian Coastal Region during a Period of Conflict, 2010 to 2020," Land, MDPI, vol. 10(2), pages 1-25, February.
    7. Chen, Si & Shahi, Chander & Chen, Han Y.H. & Kumar, Praveen & Ma, Zilong & McLaren, Brian, 2018. "Trade-offs and Synergies Between Economic Gains and Plant Diversity Across a Range of Management Alternatives in Boreal Forests," Ecological Economics, Elsevier, vol. 151(C), pages 162-172.
    8. Kolo, Horst & Kindu, Mengistie & Knoke, Thomas, 2020. "Optimizing forest management for timber production, carbon sequestration and groundwater recharge," Ecosystem Services, Elsevier, vol. 44(C).
    9. Muhammad Nawaz Rajpar & Shahab Ali Khan & Allah Ditta & Hayssam M. Ali & Sami Ullah & Muhammad Ibrahim & Altaf Hussain Rajpar & Mohamed Zakaria & Mohamed Z. M. Salem, 2021. "Subtropical Broad-Leaved Urban Forests as the Foremost Dynamic and Complex Habitats for a Wide Range of Bird Species," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    10. Suchocka, Marzena & Heciak, Jakub & Błaszczyk, Magdalena & Adamczyk, Joanna & Gaworski, Marek & Gawłowska, Agnieszka & Mojski, Jacek & Kalaji, Hazem M. & Kais, Karolina & Kosno-Jończy, Joanna & Heciak, 2023. "Comparison of Ecosystem Services and Replacement Value calculations performed for urban trees," Ecosystem Services, Elsevier, vol. 63(C).
    11. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    12. Mulwa, Richard & Siikamaki, Juha & Ndwiga, Michael & Alvsilver, Jessica, 2022. "Influence of proximity to and type of foraging habitat on value of insect pollination in the tropics, with applications to Kenya," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 17(2), June.
    13. Nilsson, Pia & Bommarco, Riccardo & Hansson, Helena & Kuns, Brian & Schaak, Henning, 2022. "Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms," Ecological Economics, Elsevier, vol. 198(C).
    14. Liangjin Yao & Zhigao Wang & Xiaohao Zhan & Weizhi Wu & Bo Jiang & Jiejie Jiao & Weigao Yuan & Jinru Zhu & Yi Ding & Tingting Li & Shaozong Yang & Chuping Wu, 2022. "Assessment of Species Composition and Community Structure of the Suburban Forest in Hangzhou, Eastern China," Sustainability, MDPI, vol. 14(7), pages 1-12, April.
    15. Mann, Carsten & Loft, Lasse & Hernández-Morcillo, Mónica, 2021. "Assessing forest governance innovations in Europe: Needs, challenges and ways forward for sustainable forest ecosystem service provision," Ecosystem Services, Elsevier, vol. 52(C).
    16. Jing Chen & Lingxue Yu & Fengqin Yan & Shuwen Zhang, 2020. "Ecosystem Service Loss in Response to Agricultural Expansion in the Small Sanjiang Plain, Northeast China: Process, Driver and Management," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    17. Paul A. Sandifer & Ariana E. Sutton‐Grier, 2014. "Connecting stressors, ocean ecosystem services, and human health," Natural Resources Forum, Blackwell Publishing, vol. 38(3), pages 157-167, August.
    18. Ulla Mörtberg & Xi-Lillian Pang & Rimgaudas Treinys & Renats Trubins & Gintautas Mozgeris, 2021. "Sustainability Assessment of Intensified Forestry—Forest Bioenergy versus Forest Biodiversity Targeting Forest Birds," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    19. Blanco, Carolina Casagrande & Scheiter, Simon & Sosinski, Enio & Fidelis, Alessandra & Anand, Madhur & Pillar, Valério D., 2014. "Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil," Ecological Modelling, Elsevier, vol. 291(C), pages 224-232.
    20. Lee, Dong Joo & Choi, Moon Bo, 2020. "Ecological value of global terrestrial plants," Ecological Modelling, Elsevier, vol. 438(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:442:y:2021:i:c:s0304380020304683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.