IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v440y2021ics0304380020304245.html
   My bibliography  Save this article

Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality

Author

Listed:
  • Messan, Komi
  • Rodriguez Messan, Marisabel
  • Chen, Jun
  • DeGrandi-Hoffman, Gloria
  • Kang, Yun

Abstract

Honeybees play an important role in the production of many agricultural crops and in sustaining plant diversity in undisturbed ecosystems. The rapid decline of honeybee populations have sparked great concern worldwide. Field and theoretical studies have shown that the parasitic Varroa mite (Varroa destructor Anderson and Trueman) could be the main reason for colony losses. In order to understand how mites affect population dynamics of honeybees and the health of a colony, we propose a brood-adult bee-mite interaction model in which the time lag from brood to adult bee is taken into account. Noting that the temporal dynamics of a honeybee colony varies with respect to season, we validate the model and perform parameter estimations under both constant and fluctuating seasonality scenarios. Our analytical and numerical studies reveal the following: (a) In the presence of parasite mites, the large time lag from brood to adult bee could destabilize population dynamics and drive the colony to collapse; however the small natural mortality of the adult bee population can promote a mite-free colony when time lag is small or at an intermediate level; (b) Small brood’ infestation rates could stabilize all populations at the unique interior equilibrium under constant seasonality while may drive the mite population to die out when seasonality is taken into account; (c) High brood’ infestation rates can destabilize the colony dynamics leading to population collapse depending on initial population size under constant and seasonal conditions; (d) Results from our sensitivity analysis indicate that the queen’s egg-laying may have the greatest effect on colony population size.The death rate of the brood and the colony size at which brood survivability is the half maximal were also shown to be highly sensitive with an inverse correlation to the colony population size. Our results provide insights on the effects of seasonality on the dynamics. For example, mites may die out leaving a healthy colony with brood and adult bees in the presence of seasonality while the colony collapses without seasonality.

Suggested Citation

  • Messan, Komi & Rodriguez Messan, Marisabel & Chen, Jun & DeGrandi-Hoffman, Gloria & Kang, Yun, 2021. "Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality," Ecological Modelling, Elsevier, vol. 440(C).
  • Handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304245
    DOI: 10.1016/j.ecolmodel.2020.109359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmickl, Thomas & Crailsheim, Karl, 2007. "HoPoMo: A model of honeybee intracolonial population dynamics and resource management," Ecological Modelling, Elsevier, vol. 204(1), pages 219-245.
    2. Saltelli, Andrea & Bolado, Ricardo, 1998. "An alternative way to compute Fourier amplitude sensitivity test (FAST)," Computational Statistics & Data Analysis, Elsevier, vol. 26(4), pages 445-460, February.
    3. Ronald L. Iman & Jon C. Helton, 1988. "An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 71-90, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Pilati & Vasco Boatto, 2013. "Bio-Economics Of Allocatable Pollination Services: Sequential Choices And Jointness In Sites," DEM Discussion Papers 2013/18, Department of Economics and Management.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Luciano Pilati & Vasco Boatto, 2014. "Jointness in Sites: The Case of Migratory Beekeeping," DEM Discussion Papers 2014/10, Department of Economics and Management.
    4. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    5. López-Benito, Alfredo & Bolado-Lavín, Ricardo, 2017. "A case study on global sensitivity analysis with dependent inputs: The natural gas transmission model," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 11-21.
    6. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    7. Lee, Sang-Hee & Park, Cheol-Min, 2022. "The effect of hunter-wild boar interactions and landscape heterogeneity on wild boar population size: A simulation study," Ecological Modelling, Elsevier, vol. 464(C).
    8. Shabbir Ahmed Osmani & Foysol Mahmud, 2021. "An integrated approach of machine algorithms with multi-objective optimization in performance analysis of event detection," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1976-1993, February.
    9. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    10. Nicolas A. Menzies & Brian W. Allwood & Anna S. Dean & Pete J. Dodd & Rein M. G. J. Houben & Lyndon P. James & Gwenan M. Knight & Jamilah Meghji & Linh N. Nguyen & Andrea Rachow & Samuel G. Schumacher, 2023. "Global burden of disease due to rifampicin-resistant tuberculosis: a mathematical modeling analysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Alan H. Stern, 1993. "Re‐evaluation of the Reference Dose for Methylmercury and Assessment of Current Exposure Levels," Risk Analysis, John Wiley & Sons, vol. 13(3), pages 355-364, June.
    12. Wout Slob, 1994. "Uncertainty Analysis in Multiplicative Models," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 571-576, August.
    13. James K. Hammitt, 1990. "Subjective‐Probability‐Based Scenarios for Uncertain Input Parameters: Stratospheric Ozone Depletion," Risk Analysis, John Wiley & Sons, vol. 10(1), pages 93-102, March.
    14. Yizhen Wang & Menglei Cui & Jiong Guo & Han Zhang & Yingjie Wu & Fu Li, 2023. "Decay Branch Ratio Sampling Method with Dirichlet Distribution," Energies, MDPI, vol. 16(4), pages 1-17, February.
    15. Rodriguez Messan, Marisabel & Page, Robert E. & Kang, Yun, 2018. "Effects of vitellogenin in age polyethism and population dynamics of honeybees," Ecological Modelling, Elsevier, vol. 388(C), pages 88-107.
    16. Gorka Merino & Hilario Murua & Josu Santiago & Haritz Arrizabalaga & Victor Restrepo, 2020. "Characterization, Communication, and Management of Uncertainty in Tuna Fisheries," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    17. Kieran Alden & Mark Read & Jon Timmis & Paul S Andrews & Henrique Veiga-Fernandes & Mark Coles, 2013. "Spartan: A Comprehensive Tool for Understanding Uncertainty in Simulations of Biological Systems," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-9, February.
    18. Vuillod, Bruno & Montemurro, Marco & Panettieri, Enrico & Hallo, Ludovic, 2023. "A comparison between Sobol’s indices and Shapley’s effect for global sensitivity analysis of systems with independent input variables," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Ronald L. Iman & Mark E. Johnson & Charles C. Watson, 2005. "Uncertainty Analysis for Computer Model Projections of Hurricane Losses," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1299-1312, October.
    20. Jamal M Jefferson & Hilary A Dolstad & Meera D Sivalingam & Jonathan W Snow, 2013. "Barrier Immune Effectors Are Maintained during Transition from Nurse to Forager in the Honey Bee," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.