IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v403y2019icp35-43.html
   My bibliography  Save this article

A genetic approach for simulating persistence of reintroduced tree species populations in restored forests

Author

Listed:
  • Sujii, Patricia S.
  • Nagai, Micael E.
  • Zucchi, Maria I.
  • Brancalion, Pedro H.S.
  • James, Patrick M.A.

Abstract

Tree populations in regions undergoing restoration are generally made up of few individuals, isolated from neighboring populations, and are found within a matrix of inhospitable human-modified landscapes. Resulting negative genetic consequences such as inbreeding depression and genetic drift require mitigation strategies to maintain sufficient genetic diversity in restoration areas. Such strategies often involve seed sampling from many source trees with different provenances. However, the efficacy of these approaches has not been validated. We present an individual-based spatial simulation model to evaluate the effects of: 1) differing levels of initial genetic diversity; and 2) different area sizes on short (tens of years) and mid-term (hundreds of years) restored population viability. We demonstrate this approach and the use of our model with case study of Centrolobium tomentosum, a tropical tree species widely used in restoration projects in the Atlantic Forest of Brazil. Our model and analysis framework can be applied in studies of tree species with different characteristics, from tropical and temperate forests, to assess population persistence in restoration sites as a function of genetic diversity and population size. This knowledge can support planning of both restoration projects and management actions, increasing the probability of restoration success while also reducing associated costs.

Suggested Citation

  • Sujii, Patricia S. & Nagai, Micael E. & Zucchi, Maria I. & Brancalion, Pedro H.S. & James, Patrick M.A., 2019. "A genetic approach for simulating persistence of reintroduced tree species populations in restored forests," Ecological Modelling, Elsevier, vol. 403(C), pages 35-43.
  • Handle: RePEc:eee:ecomod:v:403:y:2019:i:c:p:35-43
    DOI: 10.1016/j.ecolmodel.2019.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019301590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    2. Seidl, Rupert & Rammer, Werner & Scheller, Robert M. & Spies, Thomas A., 2012. "An individual-based process model to simulate landscape-scale forest ecosystem dynamics," Ecological Modelling, Elsevier, vol. 231(C), pages 87-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    2. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    3. Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
    4. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    5. Luo, Xu & He, Hong S. & Liang, Yu & Wu, Zhiwei, 2015. "Evaluating simulated effects of succession, fire, and harvest for LANDIS PRO forest landscape model," Ecological Modelling, Elsevier, vol. 297(C), pages 1-10.
    6. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    7. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    8. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    9. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    10. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    11. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    12. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    13. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    14. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    15. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    16. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    17. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    18. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    19. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    20. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:403:y:2019:i:c:p:35-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.