IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v392y2019icp38-51.html
   My bibliography  Save this article

Applicability of a one-dimensional coupled ecological-hydrodynamic numerical model to future projections in a very deep large lake (Lake Maggiore, Northern Italy/Southern Switzerland)

Author

Listed:
  • Fenocchi, Andrea
  • Rogora, Michela
  • Morabito, Giuseppe
  • Marchetto, Aldo
  • Sibilla, Stefano
  • Dresti, Claudia

Abstract

One-dimensional coupled ecological-hydrodynamic numerical models of lakes require extensive calibration of their chemical and biological parameters. Application of these models to future projections relies on the time invariance of the calibrated model parameters and of the adopted schematisation. This is mere speculation for real ecosystems, so that it is relevant to explore the limits of coupled models over extended periods. To date, almost all applications in literature have been calibrated over a couple of years at most, with comparable validation periods, if present. Furthermore, past studies mostly concerned shallow to moderately deep small lakes, so that reproducing the hypolimnetic chemical evolution of very deep large lakes has generally been overlooked. Last, most works did not compare with observations or even model the succession of phytoplankton species, but only dealt with total Chlorophyll-a. Here, the GLM-AED2 (General Lake Model – Aquatic EcoDynamics) coupled model was calibrated and validated for an overall 16.75-year period for the 370-m deep and 213-km2 wide Lake Maggiore (Northern Italy/Southern Switzerland), focusing on the reproduction of both deep-water chemistry and phytoplankton biomass and succession. Despite the modelling simplifications needed for this complex basin, the resulting performances are comparable to those in literature for shallower and smaller lakes over shorter periods. Still, extreme care must be put when interpreting the results of coupled ecological-hydrodynamic models for long-term projections, especially regarding the evolution of phytoplankton.

Suggested Citation

  • Fenocchi, Andrea & Rogora, Michela & Morabito, Giuseppe & Marchetto, Aldo & Sibilla, Stefano & Dresti, Claudia, 2019. "Applicability of a one-dimensional coupled ecological-hydrodynamic numerical model to future projections in a very deep large lake (Lake Maggiore, Northern Italy/Southern Switzerland)," Ecological Modelling, Elsevier, vol. 392(C), pages 38-51.
  • Handle: RePEc:eee:ecomod:v:392:y:2019:i:c:p:38-51
    DOI: 10.1016/j.ecolmodel.2018.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018303739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerimoglu, Onur & Jacquet, Stéphan & Vinçon-Leite, Brigitte & Lemaire, Bruno J. & Rimet, Frédéric & Soulignac, Frédéric & Trévisan, Dominique & Anneville, Orlane, 2017. "Modelling the plankton groups of the deep, peri-alpine Lake Bourget," Ecological Modelling, Elsevier, vol. 359(C), pages 415-433.
    2. Hillmer, Ingrid & van Reenen, Penelope & Imberger, Jörg & Zohary, Tamar, 2008. "Phytoplankton patchiness and their role in the modelled productivity of a large, seasonally stratified lake," Ecological Modelling, Elsevier, vol. 218(1), pages 49-59.
    3. Shimoda, Yuko & Arhonditsis, George B., 2016. "Phytoplankton functional type modelling: Running before we can walk? A critical evaluation of the current state of knowledge," Ecological Modelling, Elsevier, vol. 320(C), pages 29-43.
    4. Snortheim, Craig A. & Hanson, Paul C. & McMahon, Katherine D. & Read, Jordan S. & Carey, Cayelan C. & Dugan, Hilary A., 2017. "Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake," Ecological Modelling, Elsevier, vol. 343(C), pages 39-53.
    5. Li, Yu & Waite, Anya M. & Gal, Gideon & Hipsey, Matthew R., 2013. "An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment," Ecological Modelling, Elsevier, vol. 252(C), pages 196-213.
    6. Burger, David F. & Hamilton, David P. & Pilditch, Conrad A., 2008. "Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake," Ecological Modelling, Elsevier, vol. 211(3), pages 411-423.
    7. Gal, G. & Hipsey, M.R. & Parparov, A. & Wagner, U. & Makler, V. & Zohary, T., 2009. "Implementation of ecological modeling as an effective management and investigation tool: Lake Kinneret as a case study," Ecological Modelling, Elsevier, vol. 220(13), pages 1697-1718.
    8. Mieleitner, Johanna & Reichert, Peter, 2008. "Modelling functional groups of phytoplankton in three lakes of different trophic state," Ecological Modelling, Elsevier, vol. 211(3), pages 279-291.
    9. Trolle, Dennis & Skovgaard, Henrik & Jeppesen, Erik, 2008. "The Water Framework Directive: Setting the phosphorus loading target for a deep lake in Denmark using the 1D lake ecosystem model DYRESM–CAEDYM," Ecological Modelling, Elsevier, vol. 219(1), pages 138-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Cheng Liu & Hong-Ming Liu & Rita Sau-Wai Yam, 2021. "A Three-Dimensional Coupled Hydrodynamic-Ecological Modeling to Assess the Planktonic Biomass in a Subalpine Lake," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    2. Falu Gong & Liancong Luo & Huiyun Li & Lan Chen & Rufeng Zhang & Guizhu Wu & Jian Zhang & Weiqiang Shi & Fan Zhang & Hao Zhang & Ting Sun, 2023. "Quantitative Assessment of Water Quality Improvement by Reducing External Loadings at Lake Erhai, Southwest China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    3. Soares, L.M.V. & Calijuri, M.C., 2021. "Sensitivity and identifiability analyses of parameters for water quality modeling of subtropical reservoirs," Ecological Modelling, Elsevier, vol. 458(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, L.M.V. & Calijuri, M.C., 2021. "Sensitivity and identifiability analyses of parameters for water quality modeling of subtropical reservoirs," Ecological Modelling, Elsevier, vol. 458(C).
    2. Weinberger, Stefan & Vetter, Mark, 2012. "Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee," Ecological Modelling, Elsevier, vol. 244(C), pages 38-48.
    3. Kerimoglu, Onur & Jacquet, Stéphan & Vinçon-Leite, Brigitte & Lemaire, Bruno J. & Rimet, Frédéric & Soulignac, Frédéric & Trévisan, Dominique & Anneville, Orlane, 2017. "Modelling the plankton groups of the deep, peri-alpine Lake Bourget," Ecological Modelling, Elsevier, vol. 359(C), pages 415-433.
    4. Wen-Cheng Liu & Hong-Ming Liu & Rita Sau-Wai Yam, 2021. "A Three-Dimensional Coupled Hydrodynamic-Ecological Modeling to Assess the Planktonic Biomass in a Subalpine Lake," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    5. Li, Yu & Waite, Anya M. & Gal, Gideon & Hipsey, Matthew R., 2013. "An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment," Ecological Modelling, Elsevier, vol. 252(C), pages 196-213.
    6. Qi Wang & Leon Boegman, 2021. "Multi-Year Simulation of Western Lake Erie Hydrodynamics and Biogeochemistry to Evaluate Nutrient Management Scenarios," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    7. Farrell, Kaitlin J. & Ward, Nicole K. & Krinos, Arianna I. & Hanson, Paul C. & Daneshmand, Vahid & Figueiredo, Renato J. & Carey, Cayelan C., 2020. "Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state," Ecological Modelling, Elsevier, vol. 430(C).
    8. Krishna, Shubham & Ulloa, Hugo N. & Kerimoglu, Onur & Minaudo, Camille & Anneville, Orlane & Wüest, Alfred, 2021. "Model-based data analysis of the effect of winter mixing on primary production in a lake under reoligotrophication," Ecological Modelling, Elsevier, vol. 440(C).
    9. Shimoda, Yuko & Arhonditsis, George B., 2016. "Phytoplankton functional type modelling: Running before we can walk? A critical evaluation of the current state of knowledge," Ecological Modelling, Elsevier, vol. 320(C), pages 29-43.
    10. Snortheim, Craig A. & Hanson, Paul C. & McMahon, Katherine D. & Read, Jordan S. & Carey, Cayelan C. & Dugan, Hilary A., 2017. "Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake," Ecological Modelling, Elsevier, vol. 343(C), pages 39-53.
    11. Nakhaei, Nader & Boegman, Leon & Mehdizadeh, Mahyar & Loewen, Mark, 2021. "Three-dimensional biogeochemical modeling of eutrophication in Edmonton stormwater ponds," Ecological Modelling, Elsevier, vol. 456(C).
    12. Missaghi, Shahram & Hondzo, Miki, 2010. "Evaluation and application of a three-dimensional water quality model in a shallow lake with complex morphometry," Ecological Modelling, Elsevier, vol. 221(11), pages 1512-1525.
    13. Zhang, Xiaoqing & Recknagel, Friedrich & Chen, Qiuwen & Cao, Hongqing & Li, Ruonan, 2015. "Spatially-explicit modelling and forecasting of cyanobacteria growth in Lake Taihu by evolutionary computation," Ecological Modelling, Elsevier, vol. 306(C), pages 216-225.
    14. Dittrich, M. & Wehrli, B. & Reichert, P., 2009. "Lake sediments during the transient eutrophication period: Reactive-transport model and identifiability study," Ecological Modelling, Elsevier, vol. 220(20), pages 2751-2769.
    15. Weng, Weizhe & Boyle, Kevin J. & Farrell, Kaitlin J. & Carey, Cayelan C. & Cobourn, Kelly M. & Dugan, Hilary A. & Hanson, Paul C. & Ward, Nicole K. & Weathers, Kathleen C., 2020. "Coupling Natural and Human Models in the Context of a Lake Ecosystem: Lake Mendota, Wisconsin, USA," Ecological Economics, Elsevier, vol. 169(C).
    16. Vassilis Z. Antonopoulos & Soultana K. Gianniou, 2023. "Energy Budget, Water Quality Parameters and Primary Production Modeling in Lake Volvi in Northern Greece," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    17. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.
    18. Sierra E, Cagle & Daniel L, Roelke, 2021. "Relative roles of fundamental processes underpinning PEG dynamics in dimictic lakes as revealed by a self-organizing, multi-population plankton model," Ecological Modelling, Elsevier, vol. 462(C).
    19. Liang, Zhongyao & Wu, Sifeng & Chen, Huili & Yu, Yanhong & Liu, Yong, 2018. "A probabilistic method to enhance understanding of nutrient limitation dynamics of phytoplankton," Ecological Modelling, Elsevier, vol. 368(C), pages 404-410.
    20. Deutsch, Eliza S. & Alameddine, Ibrahim & Qian, Song S., 2020. "Using structural equation modeling to better understand microcystis biovolume dynamics in a mediterranean hypereutrophic reservoir," Ecological Modelling, Elsevier, vol. 435(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:392:y:2019:i:c:p:38-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.