Author
Listed:
- Wander, Heather L.
- Lofton, Mary E.
- Doubek, Jonathan P.
- Howard, Dexter W.
- Hipsey, Matthew R.
- Quinn Thomas, R.
- Carey, Cayelan C.
Abstract
Warming air temperatures are altering many physical, chemical, and biological processes in freshwater ecosystems. Process-based ecosystem models are important tools for predicting potential future changes to water quality due to warming by simulating complex ecological interactions. However, while previous studies have modeled climate-driven impacts on water quality (e.g., water temperature, dissolved oxygen, phytoplankton), few have included zooplankton, despite their critical role in freshwater ecosystems. Zooplankton functional groups can exhibit variable responses to warming temperatures, but the implications of these responses on freshwater ecosystems are not well understood. To understand the effects of warming on reservoir zooplankton and water quality, we configured and calibrated a process-based freshwater ecosystem model simulating three zooplankton functional groups and then applied multiple air temperature scenarios to explore ecosystem responses. We found that warming air temperature increased modeled rotifer biomass and decreased modeled cladoceran and copepod biomass. While the timing of annual rotifer peak biomass was not altered by warming air temperatures, annual copepod biomass peaks were delayed by 54–100 days within a year across warming scenarios. The timing of cladoceran biomass peaks was more variable in response to warming. Changes to the timing and magnitude of modeled zooplankton biomass were likely driven by changes in nutrients and phytoplankton, as we observed a trophic mismatch between phytoplankton and zooplankton biomass. These results highlight the importance of including zooplankton functional groups in process-based models when exploring the future effects of climate change on freshwater ecosystems, as changes in zooplankton communities can directly and indirectly alter ecosystem dynamics.
Suggested Citation
Wander, Heather L. & Lofton, Mary E. & Doubek, Jonathan P. & Howard, Dexter W. & Hipsey, Matthew R. & Quinn Thomas, R. & Carey, Cayelan C., 2025.
"Warming air temperatures alter the timing and magnitude of reservoir zooplankton biomass,"
Ecological Modelling, Elsevier, vol. 509(C).
Handle:
RePEc:eee:ecomod:v:509:y:2025:i:c:s0304380025002583
DOI: 10.1016/j.ecolmodel.2025.111272
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:509:y:2025:i:c:s0304380025002583. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.