IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v509y2025ics0304380025002583.html

Warming air temperatures alter the timing and magnitude of reservoir zooplankton biomass

Author

Listed:
  • Wander, Heather L.
  • Lofton, Mary E.
  • Doubek, Jonathan P.
  • Howard, Dexter W.
  • Hipsey, Matthew R.
  • Quinn Thomas, R.
  • Carey, Cayelan C.

Abstract

Warming air temperatures are altering many physical, chemical, and biological processes in freshwater ecosystems. Process-based ecosystem models are important tools for predicting potential future changes to water quality due to warming by simulating complex ecological interactions. However, while previous studies have modeled climate-driven impacts on water quality (e.g., water temperature, dissolved oxygen, phytoplankton), few have included zooplankton, despite their critical role in freshwater ecosystems. Zooplankton functional groups can exhibit variable responses to warming temperatures, but the implications of these responses on freshwater ecosystems are not well understood. To understand the effects of warming on reservoir zooplankton and water quality, we configured and calibrated a process-based freshwater ecosystem model simulating three zooplankton functional groups and then applied multiple air temperature scenarios to explore ecosystem responses. We found that warming air temperature increased modeled rotifer biomass and decreased modeled cladoceran and copepod biomass. While the timing of annual rotifer peak biomass was not altered by warming air temperatures, annual copepod biomass peaks were delayed by 54–100 days within a year across warming scenarios. The timing of cladoceran biomass peaks was more variable in response to warming. Changes to the timing and magnitude of modeled zooplankton biomass were likely driven by changes in nutrients and phytoplankton, as we observed a trophic mismatch between phytoplankton and zooplankton biomass. These results highlight the importance of including zooplankton functional groups in process-based models when exploring the future effects of climate change on freshwater ecosystems, as changes in zooplankton communities can directly and indirectly alter ecosystem dynamics.

Suggested Citation

  • Wander, Heather L. & Lofton, Mary E. & Doubek, Jonathan P. & Howard, Dexter W. & Hipsey, Matthew R. & Quinn Thomas, R. & Carey, Cayelan C., 2025. "Warming air temperatures alter the timing and magnitude of reservoir zooplankton biomass," Ecological Modelling, Elsevier, vol. 509(C).
  • Handle: RePEc:eee:ecomod:v:509:y:2025:i:c:s0304380025002583
    DOI: 10.1016/j.ecolmodel.2025.111272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025002583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kerimoglu, Onur & Jacquet, Stéphan & Vinçon-Leite, Brigitte & Lemaire, Bruno J. & Rimet, Frédéric & Soulignac, Frédéric & Trévisan, Dominique & Anneville, Orlane, 2017. "Modelling the plankton groups of the deep, peri-alpine Lake Bourget," Ecological Modelling, Elsevier, vol. 359(C), pages 415-433.
    2. Zhang, Chen & Zhu, Zixuan & Špoljar, Maria & Kuczyńska-Kippen, Natalia & Dražina, Tvrtko & Cvetnić, Matija & Mleczek, Mirosław, 2022. "Ecosystem models indicate zooplankton biomass response to nutrient input and climate warming is related to lake size," Ecological Modelling, Elsevier, vol. 464(C).
    3. Read, Jordan S. & Winslow, Luke A. & Hansen, Gretchen J.A. & Van Den Hoek, Jamon & Hanson, Paul C. & Bruce, Louise C. & Markfort, Corey D., 2014. "Simulating 2368 temperate lakes reveals weak coherence in stratification phenology," Ecological Modelling, Elsevier, vol. 291(C), pages 142-150.
    4. Aiko Voigt & Nicole Albern & Paulo Ceppi & Kevin Grise & Ying Li & Brian Medeiros, 2021. "Clouds, radiation, and atmospheric circulation in the present‐day climate and under climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    5. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    6. Komatsu, Eiji & Fukushima, Takehiko & Harasawa, Hideo, 2007. "A modeling approach to forecast the effect of long-term climate change on lake water quality," Ecological Modelling, Elsevier, vol. 209(2), pages 351-366.
    7. Fabien Cremona & Helen Agasild & Juta Haberman & Priit Zingel & Peeter Nõges & Tiina Nõges & Alo Laas, 2020. "How warming and other stressors affect zooplankton abundance, biomass and community composition in shallow eutrophic lakes," Climatic Change, Springer, vol. 159(4), pages 565-580, April.
    8. Skov, Henrik & Rasmussen, Erik Kock & Kotta, Jonne & Middelboe, Anne Lise & Uhrenholdt, Thomas & Žydelis, Ramunas, 2020. "Food web responses to eutrophication control in a coastal area of the Baltic Sea," Ecological Modelling, Elsevier, vol. 435(C).
    9. Gal, G. & Hipsey, M.R. & Parparov, A. & Wagner, U. & Makler, V. & Zohary, T., 2009. "Implementation of ecological modeling as an effective management and investigation tool: Lake Kinneret as a case study," Ecological Modelling, Elsevier, vol. 220(13), pages 1697-1718.
    10. Farrell, Kaitlin J. & Ward, Nicole K. & Krinos, Arianna I. & Hanson, Paul C. & Daneshmand, Vahid & Figueiredo, Renato J. & Carey, Cayelan C., 2020. "Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state," Ecological Modelling, Elsevier, vol. 430(C).
    11. Andrew S. MacDougall & Eric Harvey & Jenny L. McCune & Karin A. Nilsson & Joseph Bennett & Jennifer Firn & Timothy Bartley & James B. Grace & Jocelyn Kelly & Tyler D. Tunney & Bailey McMeans & Shin-Ic, 2018. "Context-dependent interactions and the regulation of species richness in freshwater fish," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    12. Ewa Merz & Erik Saberski & Luis J. Gilarranz & Peter D. F. Isles & George Sugihara & Christine Berger & Francesco Pomati, 2023. "Disruption of ecological networks in lakes by climate change and nutrient fluctuations," Nature Climate Change, Nature, vol. 13(4), pages 389-396, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, L.M.V. & Calijuri, M.C., 2021. "Sensitivity and identifiability analyses of parameters for water quality modeling of subtropical reservoirs," Ecological Modelling, Elsevier, vol. 458(C).
    2. Farrell, Kaitlin J. & Ward, Nicole K. & Krinos, Arianna I. & Hanson, Paul C. & Daneshmand, Vahid & Figueiredo, Renato J. & Carey, Cayelan C., 2020. "Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state," Ecological Modelling, Elsevier, vol. 430(C).
    3. Wen-Cheng Liu & Hong-Ming Liu & Rita Sau-Wai Yam, 2021. "A Three-Dimensional Coupled Hydrodynamic-Ecological Modeling to Assess the Planktonic Biomass in a Subalpine Lake," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    4. Snortheim, Craig A. & Hanson, Paul C. & McMahon, Katherine D. & Read, Jordan S. & Carey, Cayelan C. & Dugan, Hilary A., 2017. "Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake," Ecological Modelling, Elsevier, vol. 343(C), pages 39-53.
    5. Fenocchi, Andrea & Rogora, Michela & Morabito, Giuseppe & Marchetto, Aldo & Sibilla, Stefano & Dresti, Claudia, 2019. "Applicability of a one-dimensional coupled ecological-hydrodynamic numerical model to future projections in a very deep large lake (Lake Maggiore, Northern Italy/Southern Switzerland)," Ecological Modelling, Elsevier, vol. 392(C), pages 38-51.
    6. Zhang, Xiaoqing & Recknagel, Friedrich & Chen, Qiuwen & Cao, Hongqing & Li, Ruonan, 2015. "Spatially-explicit modelling and forecasting of cyanobacteria growth in Lake Taihu by evolutionary computation," Ecological Modelling, Elsevier, vol. 306(C), pages 216-225.
    7. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Li, Yu & Waite, Anya M. & Gal, Gideon & Hipsey, Matthew R., 2013. "An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment," Ecological Modelling, Elsevier, vol. 252(C), pages 196-213.
    9. Murat Can, 2024. "Invasive-Weed-Optimization-Based Extreme Learning Machine for Prediction of Lake Water Level Using Major Atmospheric–Oceanic Climate Scenarios," Sustainability, MDPI, vol. 16(17), pages 1-13, September.
    10. Sandro W. Lubis & Bryce E. Harrop & Jian Lu & L. Ruby Leung & Ziming Chen & Clare S. Y. Huang & Nour-Eddine Omrani, 2025. "Cloud radiative effects significantly increase wintertime atmospheric blocking in the Euro-Atlantic sector," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    11. Fatemeh Bashirian & Dariush Rahimi, 2025. "Air temperature change and drought effect on water tension and internal migration in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1353-1373, January.
    12. Weinberger, Stefan & Vetter, Mark, 2012. "Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee," Ecological Modelling, Elsevier, vol. 244(C), pages 38-48.
    13. Rui Xia & Yuan Zhang & Andrea Critto & Jieyun Wu & Juntao Fan & Zhirong Zheng & Yizhang Zhang, 2016. "The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China," Sustainability, MDPI, vol. 8(3), pages 1-17, March.
    14. Konstantinos Stefanidis & George Varlas & Anastasios Papadopoulos & Elias Dimitriou, 2021. "Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece," Sustainability, MDPI, vol. 13(17), pages 1-14, September.
    15. Dibike, Yonas & Marshall, Rebecca & de Rham, Laurent, 2024. "Climatic sensitivity of seasonal ice-cover, water temperature and biogeochemical cycling in Lake 239 of the Experimental Lakes Area (ELA), Ontario, Canada," Ecological Modelling, Elsevier, vol. 489(C).
    16. Barbosa, Carolina Cerqueira & Calijuri, Maria do Carmo & Anjinho, Phelipe da Silva & dos Santos, André Cordeiro Alves, 2023. "An integrated modeling approach to predict trophic state changes in a large Brazilian reservoir," Ecological Modelling, Elsevier, vol. 476(C).
    17. Ye Pan & Yuan Yuan & Ting Sun & Yuxin Wang & Yujing Xie & Zhengqiu Fan, 2020. "Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route," IJERPH, MDPI, vol. 17(17), pages 1-21, September.
    18. Vassilis Z. Antonopoulos & Soultana K. Gianniou, 2023. "Energy Budget, Water Quality Parameters and Primary Production Modeling in Lake Volvi in Northern Greece," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    19. Taner, Mehmet Ümit & Carleton, James N. & Wellman, Marjorie, 2011. "Integrated model projections of climate change impacts on a North American lake," Ecological Modelling, Elsevier, vol. 222(18), pages 3380-3393.
    20. Huihuang Qin & Yong Ye, 2025. "Key Technologies for Constructing Ecological Corridors and Resilience Protection and Disaster Reduction in Nearshore Waters," Sustainability, MDPI, vol. 17(12), pages 1-14, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:509:y:2025:i:c:s0304380025002583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.