IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v321y2016icp110-120.html
   My bibliography  Save this article

Spatiotemporal patterns of the gross primary production in the salt marshes with rapid community change: A coupled modeling approach

Author

Listed:
  • Ge, Zhen-Ming
  • Guo, Hai-Qiang
  • Zhao, Bin
  • Zhang, Chao
  • Peltola, Heli
  • Zhang, Li-Quan

Abstract

Coastal salt marshes are among the most productive ecosystems in the world. However, rapid changes in the vegetation communities of salt marshes caused by exotic species invasion and plant propagation requires a better understanding of how these shifts affect the landscape-scale variations of gross primary production (GPP). In the Yangtze Estuary of eastern China, we firstly compared 2-years GPP values obtained through eddy covariance measurements, satellite-based estimations and model simulations in two vegetation mixtures consisting of exotic Spartina alterniflora (C4 plant) and dominant native Phragmites australis and Scirpus spp. (C3 plants) The results indicated that the low-resolution remote sensing data with light-use efficiency method did not represent well the seasonal course of GPP relative to flux measurements and underestimated the annual amount GPP by 25–32%. In contrast, a detailed process-based vegetation model with species-specific parameterizations could identify the proportions of GPP from exotic C4 and native C3 vegetation and accurately reproduce the seasonal course and annual amount of GPP in the mixtures. The slopes of the linear regressions between the measured and modeled GPP were close (1.09 and 0.89 for the two mixtures, respectively) to the 1:1 line. To further evaluate the variations in GPP throughout the salt marshes, we coupled high-resolution remote sensing data to the vegetation model by transforming the vegetation index into the leaf area index (LAI) for different species. The coupled model reproduced the spatiotemporal dynamics of GPP in the salt marshes with rapid community change during the period of 2000–2008 and identified the variations of GPP from different species. The simulations indicated that the contribution rate of exotic S. alterniflora to GPP has been greater than that of native species since 2003–2004. Therefore, we suggest that this method is useful for high-resolution estimations of regional GPP in other coastal marshes with invasive S. alterniflora in China.

Suggested Citation

  • Ge, Zhen-Ming & Guo, Hai-Qiang & Zhao, Bin & Zhang, Chao & Peltola, Heli & Zhang, Li-Quan, 2016. "Spatiotemporal patterns of the gross primary production in the salt marshes with rapid community change: A coupled modeling approach," Ecological Modelling, Elsevier, vol. 321(C), pages 110-120.
  • Handle: RePEc:eee:ecomod:v:321:y:2016:i:c:p:110-120
    DOI: 10.1016/j.ecolmodel.2015.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015005207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew L. Kirwan & J. Patrick Megonigal, 2013. "Tidal wetland stability in the face of human impacts and sea-level rise," Nature, Nature, vol. 504(7478), pages 53-60, December.
    2. Ge, Zhen-Ming & Zhou, Xiao & Kellomäki, Seppo & Peltola, Heli & Wang, Kai-Yun, 2011. "Climate, canopy conductance and leaf area development controls on evapotranspiration in a boreal coniferous forest over a 10-year period: A united model assessment," Ecological Modelling, Elsevier, vol. 222(9), pages 1626-1638.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yang & Yuan, Lin & Cao, Hao-Bing & Tang, Chen-Dong & Wang, Xian-Ye & Tian, Bo & Dou, Shen-Tang & Zhang, Li-Quan & Shen, Jian, 2021. "A dynamic biomass model of emergent aquatic vegetation under different water levels and salinity," Ecological Modelling, Elsevier, vol. 440(C).
    2. Zhang, Qian & Shen, Juqin & Sun, Fuhua, 2021. "Spatiotemporal differentiation of coupling coordination degree between economic development and water environment and its influencing factors using GWR in China's province," Ecological Modelling, Elsevier, vol. 462(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hermine Vedogbeton & Robert J. Johnston, 2020. "Commodity Consistent Meta-Analysis of Wetland Values: An Illustration for Coastal Marsh Habitat," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 835-865, April.
    2. Epanchin-Niell, Rebecca S. & Thompson, Alexandra & Han, Xianru & Post, Jessica & Miller, Jarrod & Newburn, David & Gedan, Keryn & Tully, Kate, 2023. "Coastal agricultural land use response to sea level rise and saltwater intrusion," 2023 Annual Meeting, July 23-25, Washington D.C. 335970, Agricultural and Applied Economics Association.
    3. Danghan Xie & Christian Schwarz & Maarten G. Kleinhans & Karin R. Bryan & Giovanni Coco & Stephen Hunt & Barend van Maanen, 2023. "Mangrove removal exacerbates estuarine infilling through landscape-scale bio-morphodynamic feedbacks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    5. Panpan Cui & Fangli Su & Fang Zhou, 2022. "Inundation Depth Shape Phenotypic Variability of Phragmites australis in Liaohe Estuary Wetland, Northeast China," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    6. Yanhui Chen & Guosheng Li & Linlin Cui & Lijuan Li & Lei He & Peipei Ma, 2022. "The Effects of Tidal Flat Reclamation on the Stability of the Coastal Area in the Jiangsu Province, China, from the Perspective of Landscape Structure," Land, MDPI, vol. 11(3), pages 1-20, March.
    7. Ariana E. Sutton-Grier & Rachel K. Gittman & Katie K. Arkema & Richard O. Bennett & Jeff Benoit & Seth Blitch & Kelly A. Burks-Copes & Allison Colden & Alyssa Dausman & Bryan M. DeAngelis & A. Randall, 2018. "Investing in Natural and Nature-Based Infrastructure: Building Better Along Our Coasts," Sustainability, MDPI, vol. 10(2), pages 1-11, February.
    8. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.
    9. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    10. Bregje K. van Wesenbeeck & Wiebe de Boer & Siddharth Narayan & Wouter R. L. van der Star & Mindert B. de Vries, 2017. "Coastal and riverine ecosystems as adaptive flood defenses under a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1087-1094, October.
    11. Joshua Adotey & Emmanuel Acheampong & Denis Worlanyo Aheto & John Blay, 2022. "Carbon Stocks Assessment in a Disturbed and Undisturbed Mangrove Forest in Ghana," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    12. Davis, Melanie J. & Woo, Isa & De La Cruz, Susan E.W., 2019. "Development and implementation of an empirical habitat change model and decision support tool for estuarine ecosystems," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    13. Ting Wu & Xiyong Hou & Qing Chen, 2016. "Coastal economic vulnerability to sea level rise of Bohai Rim in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1231-1241, January.
    14. Vinent, Orencio Duran & Johnston, Robert J. & Kirwan, Matthew L. & Leroux, Anke D. & Martin, Vance L., 2019. "Coastal dynamics and adaptation to uncertain sea level rise: Optimal portfolios for salt marsh migration," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    15. Chiara D’Alpaos & Andrea D’Alpaos, 2021. "The Valuation of Ecosystem Services in the Venice Lagoon: A Multicriteria Approach," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    16. Poppe, Katrina L. & Rybczyk, John M., 2022. "Assessing the future of an intertidal seagrass meadow in response to sea level rise with a hybrid ecogeomorphic model of elevation change," Ecological Modelling, Elsevier, vol. 469(C).
    17. Binglin Liu & Haotian Wu & Zhenke Zhang & Guoen Wei & Yue Wang & Jie Zheng & Xuepeng Ji & Shengnan Jiang, 2021. "Recent Evolution of the Intertidal Sand Ridge Lines of the Dongsha Shoal in the Modern Radial Sand Ridges, East China," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    18. Mo, Yu & Momen, Bahram & Kearney, Michael S., 2015. "Quantifying moderate resolution remote sensing phenology of Louisiana coastal marshes," Ecological Modelling, Elsevier, vol. 312(C), pages 191-199.
    19. Minjing Wang & Yanyan Kang & Zhuyou Sun & Jun Lei & Xiuqiang Peng, 2022. "Monitoring Wetland Landscape Evolution Using Landsat Time-Series Data: A Case Study of the Nantong Coast, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    20. Eli D. Lazarus, 2017. "Toward a Global Classification of Coastal Anthromes," Land, MDPI, vol. 6(1), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:321:y:2016:i:c:p:110-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.