IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v314y2015icp118-134.html
   My bibliography  Save this article

The continental shelf carbon pump in the northern Adriatic Sea (Mediterranean Sea): Influence of wintertime variability

Author

Listed:
  • Cossarini, G.
  • Querin, S.
  • Solidoro, C.

Abstract

The northern Adriatic Sea, a marginal sea of the Mediterranean, is both a highly productive shelf area and a dense water formation site. The combination of productivity and dense water formation on the shelf (i.e., the continental shelf carbon pump process) enhances the vertical transport of carbon into the interior of the Mediterranean Sea contributing to the atmospheric CO2 sequestration. In this study, the carbon air–sea exchange and the continental shelf pump process are investigated by coupling the Massachusetts Institute of Technology general circulation model (MITgcm) with a biogeochemical model (AdriBio) that includes a carbonate dynamics module. The results of the numerical simulations show that the northern Adriatic Sea is currently a CO2 sink, with an annual flux of approximately 2.9mmol/m2/d. The carbon cycle on the continental shelf is the result of a complex interaction of several processes that induce significant temporal and spatial variability in CO2 fluxes and transport. Simulation results show that winter cooling affects the solubility of CO2 on a basin-wide scale and governs the intensity of the vertical transport of carbon out of the shelf by modulating both the properties and the volume of the newly formed dense water masses. In warm winter conditions, the mitigation of the solubility pump process and the reduced dense water formation result in a significant decrease in atmospheric CO2 sequestration and deep-carbon transport with respect to the reference condition. Biological processes (i.e., net primary production and sink of particulate matter) contribute up to more than half of the CO2 air–sea flux, but they must be spatially synchronized with the dense water formation to maximize the efficiency of the carbon transport into the deepest layers of the Adriatic Sea. Finally, the terrestrial input of dissolved inorganic carbon and alkalinity and the exchanges across the Otranto Strait can affect the carbonate system equilibrium in the area – hence the magnitude of the air–sea CO2 exchange – but have little impact on the deep-carbon transport.

Suggested Citation

  • Cossarini, G. & Querin, S. & Solidoro, C., 2015. "The continental shelf carbon pump in the northern Adriatic Sea (Mediterranean Sea): Influence of wintertime variability," Ecological Modelling, Elsevier, vol. 314(C), pages 118-134.
  • Handle: RePEc:eee:ecomod:v:314:y:2015:i:c:p:118-134
    DOI: 10.1016/j.ecolmodel.2015.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015003300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Bauer & Wei-Jun Cai & Peter A. Raymond & Thomas S. Bianchi & Charles S. Hopkinson & Pierre A. G. Regnier, 2013. "The changing carbon cycle of the coastal ocean," Nature, Nature, vol. 504(7478), pages 61-70, December.
    2. Cossarini, Gianpiero & Solidoro, Cosimo, 2008. "Global sensitivity analysis of a trophodynamic model of the Gulf of Trieste," Ecological Modelling, Elsevier, vol. 212(1), pages 16-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Quichimbo-Miguitama & David Matamoros & Leticia Jiménez & Pablo Quichimbo-Miguitama, 2022. "Influence of Low-Impact Development in Flood Control: A Case Study of the Febres Cordero Stormwater System of Guayaquil (Ecuador)," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    2. Katrina L Poppe & John M Rybczyk, 2021. "Tidal marsh restoration enhances sediment accretion and carbon accumulation in the Stillaguamish River estuary, Washington," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    3. Zheng, Wei & Shi, Honghua & Fang, Guohong & Hu, Long & Peng, Shitao & Zhu, Mingyuan, 2012. "Global sensitivity analysis of a marine ecosystem dynamic model of the Sanggou Bay," Ecological Modelling, Elsevier, vol. 247(C), pages 83-94.
    4. Luisetti, Tiziana & Turner, R. Kerry & Andrews, Julian E. & Jickells, Timothy D. & Kröger, Silke & Diesing, Markus & Paltriguera, Lucille & Johnson, Martin T. & Parker, Eleanor R. & Bakker, Dorothee , 2019. "Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK," Ecosystem Services, Elsevier, vol. 35(C), pages 67-76.
    5. Jiang, Long & Xia, Meng, 2017. "Wind effects on the spring phytoplankton dynamics in the middle reach of the Chesapeake Bay," Ecological Modelling, Elsevier, vol. 363(C), pages 68-80.
    6. Wei-Jen Huang & Kai-Jung Kao & Li-Lian Liu & Chi-Wen Liao & Yin-Lung Han, 2018. "An Assessment of Direct Dissolved Inorganic Carbon Injection to the Coastal Region: A Model Result," Sustainability, MDPI, vol. 10(4), pages 1-10, April.
    7. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    8. Yu, Shiyang & Song, Da & Fan, Meng & Xie, Congbo, 2023. "Effects of temperature and salinity on growth of Aurelia aurita," Ecological Modelling, Elsevier, vol. 476(C).
    9. KHAN Shohel & MOUSUMI Israth Jahan & BILLAH Mohammad Maruf, 2022. "Crop Production Fluctuation And Agricultural Transformation: Impacts Of Constructing A Closure Dam," Management of Sustainable Development, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 30-35, June.
    10. Liang Chen & Zhengxin Yin & Meng Tang & Tuanjie Li & Dong Xu, 2022. "Distribution and Genesis of Organic Carbon Storage on the Northern Shelf of the South China Sea," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    11. Feng, Jing-Chun & Sun, Liwei & Yan, Jinyue, 2023. "Carbon sequestration via shellfish farming: A potential negative emissions technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    12. Shasha Song & Isaac R. Santos & Huaming Yu & Faming Wang & William C. Burnett & Thomas S. Bianchi & Junyu Dong & Ergang Lian & Bin Zhao & Lawrence Mayer & Qingzhen Yao & Zhigang Yu & Bochao Xu, 2022. "A global assessment of the mixed layer in coastal sediments and implications for carbon storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Miho Ishizu & Yasumasa Miyazawa & Tomohiko Tsunoda & Xinyu Guo, 2019. "Development of a Biogeochemical and Carbon Model Related to Ocean Acidification Indices with an Operational Ocean Model Product in the North Western Pacific," Sustainability, MDPI, vol. 11(9), pages 1-28, May.
    14. Kunshan Bao & Ji Shen & Guoping Wang & Chuanyu Gao, 2015. "Anthropogenic Black Carbon Emission Increase during the Last 150 Years at Coastal Jiangsu, China," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    15. Jiang Wu & Nan Xu & Yichu Wang & Wei Zhang & Alistair G. L. Borthwick & Jinren Ni, 2021. "Global syndromes induced by changes in solutes of the world’s large rivers," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Portilla, E. & Tett, P. & Gillibrand, P.A. & Inall, Mark, 2009. "Description and sensitivity analysis for the LESV model: Water quality variables and the balance of organisms in a fjordic region of restricted exchange," Ecological Modelling, Elsevier, vol. 220(18), pages 2187-2205.
    17. Laurel Ballanti & Kristin B. Byrd & Isa Woo & Christopher Ellings, 2017. "Remote Sensing for Wetland Mapping and Historical Change Detection at the Nisqually River Delta," Sustainability, MDPI, vol. 9(11), pages 1-32, October.
    18. Sankar, S. & Polimene, L. & Marin, L. & Menon, N.N. & Samuelsen, A. & Pastres, R. & Ciavatta, S., 2018. "Sensitivity of the simulated Oxygen Minimum Zone to biogeochemical processes at an oligotrophic site in the Arabian Sea," Ecological Modelling, Elsevier, vol. 372(C), pages 12-23.
    19. Miho Ishizu & Yasumasa Miyazawa & Tomohiko Tsunoda & Xinyu Guo, 2020. "Seasonal variability in the inorganic ocean carbon cycle in the Northwest Pacific evaluated using a biogeochemical and carbon model coupled with an operational ocean model," Climatic Change, Springer, vol. 162(2), pages 877-902, September.
    20. Mohammad Bahadori & Chengrong Chen & Stephen Lewis & Juntao Wang & Jupei Shen & Enqing Hou & Mehran Rezaei Rashti & Qiaoyun Huang & Zoe Bainbridge & Tom Stevens, 2023. "The origin of suspended particulate matter in the Great Barrier Reef," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:314:y:2015:i:c:p:118-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.