IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v266y2013icp30-41.html
   My bibliography  Save this article

Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas

Author

Listed:
  • Bellot, Juan
  • Chirino, Esteban

Abstract

In semiarid areas, water is a limited resource and its management is a challenge. Water-balance models can improve the management of water resources by determining the effect of vegetation type on the soil–water balance and aquifer recharge. Here, we present HYDROBAL, an eco-hydrological modelling approach for assessing the water balance with a daily resolution. HYDROBAL is suitable for investigating the temporal variability in soil–water content determined by vegetation water uptake as a function of climatic conditions. The processes, mechanisms, and water flows involved in soil moisture changes are modelled based on daily rainfall and micrometeorological variables and used to predict changes in daily soil–water content. The model outputs include actual evapotranspiration, runoff, and aquifer recharge (deep percolation). The model was applied in a semi-arid area of south-eastern Spain, with six vegetation cover types: bare soil (B), open Stipa tenacissima steppe (St), thorn shrubland (S), dry grassland (G), and Aleppo pine (Pinus halepensis) afforestation of S and G (AS and AG, respectively). A dynamic evaporative coefficient (k) was calibrated for each vegetation type to estimate the soil–water consumption. The model was verified in base on its ability to predict the daily measured soil moisture content in plots with different vegetation types. Comparison between the estimated and measured soil moisture contents (θmodel vs. θTDR) indicated good model performance for all vegetation cover types in both wet and dry periods. High value of the coefficient of determination in the linear regressions for θmodel=ƒ (θTDR) demonstrate the accuracy of the hydrological model. All correlations between measured and predicted soil–water content were strong and significant (R2>0.69, p<0.001)

Suggested Citation

  • Bellot, Juan & Chirino, Esteban, 2013. "Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas," Ecological Modelling, Elsevier, vol. 266(C), pages 30-41.
  • Handle: RePEc:eee:ecomod:v:266:y:2013:i:c:p:30-41
    DOI: 10.1016/j.ecolmodel.2013.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001300327X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    2. Aydin, Mehmet, 2008. "A model for Evaporation and Drainage investigations at Ground of Ordinary Rainfed-areas," Ecological Modelling, Elsevier, vol. 217(1), pages 148-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Alberto Redondo-Orts & María Inmaculada López-Ortiz & Patricia Fernández-Aracil, 2023. "Integrated Management to Address Structural Shortage: The Case of Vega Baja of the Segura River, Alicante (Southeast Spain)," Sustainability, MDPI, vol. 15(9), pages 1-30, April.
    2. González-Sanchis, Marí a & Del Campo, Antonio D. & Molina, Antonio J. & Fernandes, Tarcí sio J.G., 2015. "Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation," Ecological Modelling, Elsevier, vol. 308(C), pages 34-44.
    3. Diana Turrión & Luna Morcillo & José Antonio Alloza & Alberto Vilagrosa, 2021. "Innovative Techniques for Landscape Recovery after Clay Mining under Mediterranean Conditions," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    4. Chen, Shilei & Huo, Zailin & Xu, Xu & Huang, Guanhua, 2019. "A conceptual agricultural water productivity model considering under field capacity soil water redistribution applicable for arid and semi-arid areas with deep groundwater," Agricultural Water Management, Elsevier, vol. 213(C), pages 309-323.
    5. Zhang, Xiaoyu & Zhang, Xiying & Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying, 2015. "Incorporating root distribution factor to evaluate soil water status for winter wheat," Agricultural Water Management, Elsevier, vol. 153(C), pages 32-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shouse, Peter J. & Ayars, James E. & Simunek, Jirí, 2011. "Simulating root water uptake from a shallow saline groundwater resource," Agricultural Water Management, Elsevier, vol. 98(5), pages 784-790, March.
    2. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    3. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    4. Li, Yong & Šimůnek, Jirka & Zhang, Zhentin & Jing, Longfei & Ni, Lixiao, 2015. "Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 148(C), pages 213-222.
    5. Wang, Jianjun & Wang, Chuantao & Li, Hongchen & Liu, Yanfang & Li, Huijie & Ren, Ruiqi & Si, Bingcheng, 2023. "Rock water use by apple trees affected by physical properties of the underlying weathered rock," Agricultural Water Management, Elsevier, vol. 287(C).
    6. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    7. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    8. Noah James Langenfeld & Daniel Fernandez Pinto & James E. Faust & Royal Heins & Bruce Bugbee, 2022. "Principles of Nutrient and Water Management for Indoor Agriculture," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    9. Sonkar, Ickkshaanshu & Kotnoor, Hari Prasad & Sen, Sumit, 2019. "Estimation of root water uptake and soil hydraulic parameters from root zone soil moisture and deep percolation," Agricultural Water Management, Elsevier, vol. 222(C), pages 38-47.
    10. Zhang, Hongyuan & Batchelor, William D. & Hu, Kelin & Liang, Hao & Han, Hui & Li, Ji, 2022. "Simulation of N2O emissions from greenhouse vegetable production under different management systems in North China," Ecological Modelling, Elsevier, vol. 470(C).
    11. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    12. Margarita A. Petoussi & Nicolas Kalogerakis, 2023. "Mathematical Modeling of Pilot Scale Olive Mill Wastewater Phytoremediation Units," Sustainability, MDPI, vol. 15(11), pages 1-36, May.
    13. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    14. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    15. Fabio V. Difonzo & Costantino Masciopinto & Michele Vurro & Marco Berardi, 2021. "Shooting the Numerical Solution of Moisture Flow Equation with Root Water Uptake Models: A Python Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2553-2567, June.
    16. Saefuddin, Reskiana & Saito, Hirotaka & Šimůnek, Jiří, 2019. "Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation," Agricultural Water Management, Elsevier, vol. 211(C), pages 111-122.
    17. Bughici, Theodor & Skaggs, Todd H. & Corwin, Dennis L. & Scudiero, Elia, 2022. "Ensemble HYDRUS-2D modeling to improve apparent electrical conductivity sensing of soil salinity under drip irrigation," Agricultural Water Management, Elsevier, vol. 272(C).
    18. Ramos, Tiago B. & Oliveira, Ana R. & Darouich, Hanaa & Gonçalves, Maria C. & Martínez-Moreno, Francisco J. & Rodríguez, Mario Ramos & Vanderlinden, Karl & Farzamian, Mohammad, 2023. "Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging," Agricultural Water Management, Elsevier, vol. 288(C).
    19. Ravikumar, V. & Vijayakumar, G. & Simunek, J. & Chellamuthu, S. & Santhi, R. & Appavu, K., 2011. "Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1431-1440, July.
    20. Nasta, Paolo & Bonanomi, Giuliano & Šimůnek, Jirka & Romano, Nunzio, 2021. "Assessing the nitrate vulnerability of shallow aquifers under Mediterranean climate conditions," Agricultural Water Management, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:266:y:2013:i:c:p:30-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.