IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v234y2012icp60-69.html
   My bibliography  Save this article

Community-level effects of plant traits in a grassland community examined by multispecies model of clonal plant growth

Author

Listed:
  • Herben, Tomáš
  • Wildová, Radka

Abstract

We examine role of natality-related plant traits in a mountain grassland community. We use a spatially explicit, individual-based model of clonal plant population dynamics that includes traits of growth, resource allocation, response to competition, and spatial spread/plant architecture, and parameterize it for four co-occurring grass species. Field measurements of plant growth and architecture were used for parameterization; the subset of parameters that cannot be obtained by field estimation were estimated by fitting model predictions to a fine-scale time series of field data using a formalized gradient-descent procedure. The parameterized model was then validated with a separate set of fine-scale time series of field data.

Suggested Citation

  • Herben, Tomáš & Wildová, Radka, 2012. "Community-level effects of plant traits in a grassland community examined by multispecies model of clonal plant growth," Ecological Modelling, Elsevier, vol. 234(C), pages 60-69.
  • Handle: RePEc:eee:ecomod:v:234:y:2012:i:c:p:60-69
    DOI: 10.1016/j.ecolmodel.2011.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011003607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomlinson, Kyle W. & Dominy, James G. & Hearne, John W. & O’Connor, Timothy G., 2007. "A functional-structural model for growth of clonal bunchgrasses," Ecological Modelling, Elsevier, vol. 202(3), pages 243-264.
    2. Lazzarotto, P. & Calanca, P. & Fuhrer, J., 2009. "Dynamics of grass–clover mixtures—An analysis of the response to management with the PROductive GRASsland Simulator (PROGRASS)," Ecological Modelling, Elsevier, vol. 220(5), pages 703-724.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oborny, B. & Mony, C. & Herben, T., 2012. "From virtual plants to real communities: A review of modelling clonal growth," Ecological Modelling, Elsevier, vol. 234(C), pages 3-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soussana, Jean-François & Maire, Vincent & Gross, Nicolas & Bachelet, Bruno & Pagès, Loic & Martin, Raphaël & Hill, David & Wirth, Christian, 2012. "Gemini: A grassland model simulating the role of plant traits for community dynamics and ecosystem functioning. Parameterization and evaluation," Ecological Modelling, Elsevier, vol. 231(C), pages 134-145.
    2. Annett Wolf & Patrick Lazzarotto & Harald Bugmann, 2012. "The relative importance of land use and climatic change in Alpine catchments," Climatic Change, Springer, vol. 111(2), pages 279-300, March.
    3. Oborny, Beáta & Englert, Péter, 2012. "Plant growth and foraging for a patchy resource: A credit model," Ecological Modelling, Elsevier, vol. 234(C), pages 20-30.
    4. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.
    5. Lieffering, Mark & Newton, Paul C.D. & Vibart, Ronaldo & Li, Frank Y., 2016. "Exploring climate change impacts and adaptations of extensive pastoral agriculture systems by combining biophysical simulation and farm system models," Agricultural Systems, Elsevier, vol. 144(C), pages 77-86.
    6. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    7. Frolov, Pavel & Shanin, Vladimir & Zubkova, Elena & Bykhovets, Sergey & Grabarnik, Pavel, 2020. "CAMPUS-S – The model of ground layer vegetation populations in forest ecosystems and their contribution to the dynamics of carbon and nitrogen. I. Problem formulation and description of the model," Ecological Modelling, Elsevier, vol. 431(C).
    8. Finger, Robert & Lazzarotto, Patrick & Calanca, Pierluigi, 2010. "Bio-economic assessment of climate change impacts on managed grassland production," Agricultural Systems, Elsevier, vol. 103(9), pages 666-674, November.
    9. Moulin, Thibault & Perasso, Antoine & Calanca, Pierluigi & Gillet, François, 2021. "DynaGraM: A process-based model to simulate multi-species plant community dynamics in managed grasslands," Ecological Modelling, Elsevier, vol. 439(C).
    10. Confalonieri, R., 2014. "CoSMo: A simple approach for reproducing plant community dynamics using a single instance of generic crop simulators," Ecological Modelling, Elsevier, vol. 286(C), pages 1-10.
    11. Hjelkrem, Anne-Grete Roer & Geipel, Jakob & Bakken, Anne Kjersti & Korsaeth, Audun, 2023. "NORNE, a process-based grass growth model accounting for within-field soil variation using remote sensing for in-season corrections," Ecological Modelling, Elsevier, vol. 483(C).
    12. Oborny, B. & Mony, C. & Herben, T., 2012. "From virtual plants to real communities: A review of modelling clonal growth," Ecological Modelling, Elsevier, vol. 234(C), pages 3-19.
    13. Vincent Maire & Nicolas Gross & David Hill & Raphaël Martin & Christian Wirth & Ian J Wright & Jean-François Soussana, 2013. "Disentangling Coordination among Functional Traits Using an Individual-Centred Model: Impact on Plant Performance at Intra- and Inter-Specific Levels," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    14. Beata Grygierzec & Kamila Musiał & Lidia Luty, 2020. "Sowing ratio, NS fertilisation and interactions of Lolium sp. and Festulolium grown in mixtures with Trifolium repens," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(8), pages 395-402.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:234:y:2012:i:c:p:60-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.