IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v230y2012icp44-49.html
   My bibliography  Save this article

Use of fish distribution modelling for river management

Author

Listed:
  • Zarkami, Rahmat
  • Sadeghi, Roghayeh
  • Goethals, Peter

Abstract

We developed decision trees (J48 algorithm) to predict the distribution of the pike (Esox lucius). Based on a historical data, 75 sampling sites were considered for the pike in 7 stream basins in Flanders (Belgium). In total, 108 instances were available in the given sites. The measured variables consisted of a combination of the structural-habitat, physical–chemical and biological variables (biomass, abundance and presence/absence of the pike). The predictive power of decision trees was assessed on the basis of the number of Correctly Classified Instances (CCI %) and Kappa statistic (k). In order to reduce the noise in the data and improve the predictive results with regard to complexity and accuracy of the predictions, different Pruning Confidence Factors (PCFs) were tested. The obtained results showed that the prediction of the pike (based on presence/absence data) was acceptable in terms of two model evaluations (CCI>70% and k>0.40). The habitat variables had more contribution to the prediction of distribution of pike relative to the water quality ones. The developed model presented a logical relationship between distribution of the pike and distance from the source, slope and followed by depth. These models can as such become essential tools to encourage river managers to make the necessary investments and/or activity changes as desired by society.

Suggested Citation

  • Zarkami, Rahmat & Sadeghi, Roghayeh & Goethals, Peter, 2012. "Use of fish distribution modelling for river management," Ecological Modelling, Elsevier, vol. 230(C), pages 44-49.
  • Handle: RePEc:eee:ecomod:v:230:y:2012:i:c:p:44-49
    DOI: 10.1016/j.ecolmodel.2012.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012000221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iebeling Kaastra & Milton S. Boyd, 1995. "Forecasting futures trading volume using neural networks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(8), pages 953-970, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kadukothanahally Nagaraju Shivaprakash & Niraj Swami & Sagar Mysorekar & Roshni Arora & Aditya Gangadharan & Karishma Vohra & Madegowda Jadeyegowda & Joseph M. Kiesecker, 2022. "Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    2. Sadeghi, Roghayeh & Zarkami, Rahmat & Sabetraftar, Karim & Van Damme, Patrick, 2012. "Application of classification trees to model the distribution pattern of a new exotic species Azolla filiculoides (Lam.) at Selkeh Wildlife Refuge, Anzali wetland, Iran," Ecological Modelling, Elsevier, vol. 243(C), pages 8-17.
    3. Sadeghi, Roghayeh & Zarkami, Rahmat & Sabetraftar, Karim & Van Damme, Patrick, 2012. "Use of support vector machines (SVMs) to predict distribution of an invasive water fern Azolla filiculoides (Lam.) in Anzali wetland, southern Caspian Sea, Iran," Ecological Modelling, Elsevier, vol. 244(C), pages 117-126.
    4. Sadeghi, Roghayeh & Zarkami, Rahmat & Sabetraftar, Karim & Van Damme, Patrick, 2013. "Application of genetic algorithm and greedy stepwise to select input variables in classification tree models for the prediction of habitat requirements of Azolla filiculoides (Lam.) in Anzali wetland,," Ecological Modelling, Elsevier, vol. 251(C), pages 44-53.
    5. Argaw Ambelu & Seblework Mekonen & Magaly Koch & Taffere Addis & Pieter Boets & Gert Everaert & Peter Goethals, 2014. "The Application of Predictive Modelling for Determining Bio-Environmental Factors Affecting the Distribution of Blackflies (Diptera: Simuliidae) in the Gilgel Gibe Watershed in Southwest Ethiopia," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-10, November.
    6. Sadeghi, Roghayeh & Zarkami, Rahmat & Van Damme, Patrick, 2014. "Modelling habitat preference of an alien aquatic fern, Azolla filiculoides (Lam.), in Anzali wetland (Iran) using data-driven methods," Ecological Modelling, Elsevier, vol. 284(C), pages 1-9.
    7. Gobeyn, Sacha & Mouton, Ans M. & Cord, Anna F. & Kaim, Andrea & Volk, Martin & Goethals, Peter L.M., 2019. "Evolutionary algorithms for species distribution modelling: A review in the context of machine learning," Ecological Modelling, Elsevier, vol. 392(C), pages 179-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    2. Mark T. Leung & An-Sing Chen, 2005. "Performance evaluation of neural network architectures: the case of predicting foreign exchange correlations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 403-420.
    3. Shaogao Lv & Yongchao Hou & Hongwei Zhou, 2019. "Financial Market Directional Forecasting With Stacked Denoising Autoencoder," Papers 1912.00712, arXiv.org.
    4. Mattei, F. & Franceschini, S. & Scardi, M., 2018. "A depth-resolved artificial neural network model of marine phytoplankton primary production," Ecological Modelling, Elsevier, vol. 382(C), pages 51-62.
    5. Matthew F Dixon, 2017. "Sequence Classification of the Limit Order Book using Recurrent Neural Networks," Papers 1707.05642, arXiv.org.
    6. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    7. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    8. Wu, Yih-Jiuan, 1998. "Exchange rate forecasting: an application of radial basis function neural networks," ISU General Staff Papers 1998010108000013540, Iowa State University, Department of Economics.
    9. Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
    10. Sudhi SHARMA & Miklesh YADAV, 2020. "Analyzing the robustness of ARIMA and neural networks as a predictive model of crude oil prices," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(2(623), S), pages 289-300, Summer.
    11. Nguyen, Trung H. & Nong, Duy & Paustian, Keith, 2019. "Surrogate-based multi-objective optimization of management options for agricultural landscapes using artificial neural networks," Ecological Modelling, Elsevier, vol. 400(C), pages 1-13.
    12. Dorota Witkowska, 1999. "Applying artificial neural networks to bank-decision simulations," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(3), pages 350-368, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:230:y:2012:i:c:p:44-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.