IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i8p1401-1413.html
   My bibliography  Save this article

Effect of model formulation on the optimization of a genetic Takagi–Sugeno fuzzy system for fish habitat suitability evaluation

Author

Listed:
  • Fukuda, Shinji
  • De Baets, Bernard
  • Mouton, Ans M.
  • Waegeman, Willem
  • Nakajima, Jun
  • Mukai, Takahiko
  • Hiramatsu, Kazuaki
  • Onikura, Norio

Abstract

Species distribution models (SDMs), which evaluate species–environment relationships, are one of the key topics in ecology and biogeography. These models evaluate the current status of target ecosystems and potential impacts in both time and space. Although species distributions are often calculated based on the composite habitat suitability of several variables, there are no guidelines for calculating them. The present study assessed the effects of model formulation on habitat suitability evaluation and the accuracy of species distribution modelling. We employed a genetic algorithm (GA)-optimized fuzzy habitat preference model (FHPM) for evaluating habitat suitability of topmouth gudgeon (Pseudorasbora parva) in the Northwestern part of Kyushu Island in Japan. Four operations were used to calculate the composite habitat suitability from multiple habitat variables: arithmetic mean, geometric mean, product and minimum. To transform model outputs to presence/absence, four threshold criteria were compared based on model accuracy: prevalence, conventional 0.5, minimization of the sensitivity–specificity difference threshold (MDT), and maximization of the sensitivity–specificity sum threshold (MST). The models were first calibrated and validated based on the mean squared error (MSE) between composite habitat suitability and the observed presence–absence of the fish, and then evaluated using confusion matrix-derived measures such as the area under the receiver operating characteristics (ROC) curve (AUC), correctly classified instances (CCI), kappa and true skill statistic (TSS). The results clearly illustrated the effects of model formulation and threshold criteria on habitat suitability curves (HSCs) and accuracy in modelling species distributions. The use of the product model formulation led to the best accuracy in terms of MSE and AUC, and consistency in the shape of HSCs. The two threshold criteria of MST and MDT are also recommended for the consistently higher performance in terms of CCI, kappa and TSS. This case study of topmouth gudgeon illustrates the need for further studies on the model behaviour with regard to data characteristics (i.e., sample size and prevalence) and model structure (i.e., fuzzy sets and parameter settings of the GA).

Suggested Citation

  • Fukuda, Shinji & De Baets, Bernard & Mouton, Ans M. & Waegeman, Willem & Nakajima, Jun & Mukai, Takahiko & Hiramatsu, Kazuaki & Onikura, Norio, 2011. "Effect of model formulation on the optimization of a genetic Takagi–Sugeno fuzzy system for fish habitat suitability evaluation," Ecological Modelling, Elsevier, vol. 222(8), pages 1401-1413.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:8:p:1401-1413
    DOI: 10.1016/j.ecolmodel.2011.01.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001100055X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.01.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mouton, Ans M. & Schneider, Matthias & Peter, Armin & Holzer, Georg & Müller, Rudolf & Goethals, Peter L.M. & De Pauw, Niels, 2008. "Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland)," Ecological Modelling, Elsevier, vol. 215(1), pages 122-132.
    2. Mouton, Ans M. & De Baets, Bernard & Van Broekhoven, Ester & Goethals, Peter L.M., 2009. "Prevalence-adjusted optimisation of fuzzy models for species distribution," Ecological Modelling, Elsevier, vol. 220(15), pages 1776-1786.
    3. Fukuda, Shinji, 2009. "Consideration of fuzziness: Is it necessary in modelling fish habitat preference of Japanese medaka (Oryzias latipes)?," Ecological Modelling, Elsevier, vol. 220(21), pages 2877-2884.
    4. Stockwell, David R.B. & Noble, Ian R., 1992. "Induction of sets of rules from animal distribution data: A robust and informative method of data analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 33(5), pages 385-390.
    5. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    6. Fukuda, Shinji & Hiramatsu, Kazuaki, 2008. "Prediction ability and sensitivity of artificial intelligence-based habitat preference models for predicting spatial distribution of Japanese medaka (Oryzias latipes)," Ecological Modelling, Elsevier, vol. 215(4), pages 301-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mouton, A.M. & Dillen, A. & Van den Neucker, T. & Buysse, D. & Stevens, M. & Coeck, J., 2012. "Impact of sampling efficiency on the performance of data-driven fish habitat models," Ecological Modelling, Elsevier, vol. 245(C), pages 94-102.
    2. Muñoz-Mas, R. & Martínez-Capel, F. & Alcaraz-Hernández, J.D. & Mouton, A.M., 2015. "Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?," Ecological Modelling, Elsevier, vol. 309, pages 72-81.
    3. Gobeyn, Sacha & Mouton, Ans M. & Cord, Anna F. & Kaim, Andrea & Volk, Martin & Goethals, Peter L.M., 2019. "Evolutionary algorithms for species distribution modelling: A review in the context of machine learning," Ecological Modelling, Elsevier, vol. 392(C), pages 179-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gobeyn, Sacha & Mouton, Ans M. & Cord, Anna F. & Kaim, Andrea & Volk, Martin & Goethals, Peter L.M., 2019. "Evolutionary algorithms for species distribution modelling: A review in the context of machine learning," Ecological Modelling, Elsevier, vol. 392(C), pages 179-195.
    2. Yi, Yujun & Cheng, Xi & Yang, Zhifeng & Wieprecht, Silke & Zhang, Shanghong & Wu, Yingjie, 2017. "Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 748-762.
    3. Mouton, A.M. & Dillen, A. & Van den Neucker, T. & Buysse, D. & Stevens, M. & Coeck, J., 2012. "Impact of sampling efficiency on the performance of data-driven fish habitat models," Ecological Modelling, Elsevier, vol. 245(C), pages 94-102.
    4. Mocq, J. & St-Hilaire, A. & Cunjak, R.A., 2013. "Assessment of Atlantic salmon (Salmo salar) habitat quality and its uncertainty using a multiple-expert fuzzy model applied to the Romaine River (Canada)," Ecological Modelling, Elsevier, vol. 265(C), pages 14-25.
    5. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    6. Yi, Yujun & Wang, Zhaoyin & Yang, Zhifeng, 2010. "Two-dimensional habitat modeling of Chinese sturgeon spawning sites," Ecological Modelling, Elsevier, vol. 221(5), pages 864-875.
    7. Holguin-Gonzalez, Javier E. & Boets, Pieter & Alvarado, Andres & Cisneros, Felipe & Carrasco, María C. & Wyseure, Guido & Nopens, Ingmar & Goethals, Peter L.M., 2013. "Integrating hydraulic, physicochemical and ecological models to assess the effectiveness of water quality management strategies for the River Cuenca in Ecuador," Ecological Modelling, Elsevier, vol. 254(C), pages 1-14.
    8. Choi, Jong-Kuk & Oh, Hyun-Joo & Koo, Bon Joo & Ryu, Joo-Hyung & Lee, Saro, 2011. "Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS," Ecological Modelling, Elsevier, vol. 222(8), pages 1522-1533.
    9. Muñoz-Mas, Rafael & Marcos-Garcia, Patricia & Lopez-Nicolas, Antonio & Martínez-García, Francisco J. & Pulido-Velazquez, Manuel & Martínez-Capel, Francisco, 2018. "Combining literature-based and data-driven fuzzy models to predict brown trout (Salmo trutta L.) spawning habitat degradation induced by climate change," Ecological Modelling, Elsevier, vol. 386(C), pages 98-114.
    10. Fukuda, Shinji, 2009. "Consideration of fuzziness: Is it necessary in modelling fish habitat preference of Japanese medaka (Oryzias latipes)?," Ecological Modelling, Elsevier, vol. 220(21), pages 2877-2884.
    11. Doko, Tomoko & Fukui, Hiromichi & Kooiman, Andre & Toxopeus, A.G. & Ichinose, Tomohiro & Chen, Wenbo & Skidmore, A.K., 2011. "Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan," Ecological Modelling, Elsevier, vol. 222(3), pages 748-761.
    12. Lin, Yu-Pin & Wang, Cheng-Long & Yu, Hsiao-Hsuan & Huang, Chung-Wei & Wang, Yung-Chieh & Chen, Yu-Wen & Wu, Wei-Yao, 2011. "Monitoring and estimating the flow conditions and fish presence probability under various flow conditions at reach scale using genetic algorithms and kriging methods," Ecological Modelling, Elsevier, vol. 222(3), pages 762-775.
    13. Mouton, Ans M. & De Baets, Bernard & Van Broekhoven, Ester & Goethals, Peter L.M., 2009. "Prevalence-adjusted optimisation of fuzzy models for species distribution," Ecological Modelling, Elsevier, vol. 220(15), pages 1776-1786.
    14. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    15. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    16. Febrina, Rina & Sekine, Masahiko & Noguchi, Hiroyuki & Yamamoto, Koichi & Kanno, Ariyo & Higuchi, Takaya & Imai, Tsuyoshi, 2015. "Modeling the preference of ayu (Plecoglossus altivelis) for underwater sounds to determine the migration path in a river," Ecological Modelling, Elsevier, vol. 299(C), pages 102-113.
    17. Cory J. Lindgren, 2012. "Biosecurity Policy and the Use of Geospatial Predictive Tools to Address Invasive Plants: Updating the Risk Analysis Toolbox," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 9-15, January.
    18. Caldow, Chris & Monaco, Mark E. & Pittman, Simon J. & Kendall, Matthew S. & Goedeke, Theresa L. & Menza, Charles & Kinlan, Brian P. & Costa, Bryan M., 2015. "Biogeographic assessments: A framework for information synthesis in marine spatial planning," Marine Policy, Elsevier, vol. 51(C), pages 423-432.
    19. Remm, Kalle & Linder, Madli & Remm, Liina, 2009. "Relative density of finds for assessing similarity-based maps of orchid occurrence," Ecological Modelling, Elsevier, vol. 220(3), pages 294-309.
    20. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:8:p:1401-1413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.