IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i16p1889-1896.html
   My bibliography  Save this article

A new approach to the analysis of adjacencies: Potentials for landscape insights

Author

Listed:
  • Ferrarini, Alessandro
  • Tomaselli, Marcello

Abstract

Spatial adjacencies are a key-issue in environmental studies. Adjacency effects have been amply observed for biotic (plants and animals) and abiotic components of ecosystems. Particularly well-documented are the effects from human manufactures onto the contiguous vegetation mosaics of natural and semi-natural areas.

Suggested Citation

  • Ferrarini, Alessandro & Tomaselli, Marcello, 2010. "A new approach to the analysis of adjacencies: Potentials for landscape insights," Ecological Modelling, Elsevier, vol. 221(16), pages 1889-1896.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:16:p:1889-1896
    DOI: 10.1016/j.ecolmodel.2010.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001000236X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perry, George L.W. & Enright, Neal J., 2007. "Contrasting outcomes of spatially implicit and spatially explicit models of vegetation dynamics in a forest-shrubland mosaic," Ecological Modelling, Elsevier, vol. 207(2), pages 327-338.
    2. Mueller, Eva Nora & Wainwright, John & Parsons, Anthony J., 2007. "The stability of vegetation boundaries and the propagation of desertification in the American Southwest: A modelling approach," Ecological Modelling, Elsevier, vol. 208(2), pages 91-101.
    3. Strand, Eva K. & Vierling, Lee A. & Bunting, Stephen C., 2009. "A spatially explicit model to predict future landscape composition of aspen woodlands under various management scenarios," Ecological Modelling, Elsevier, vol. 220(2), pages 175-191.
    4. Gillet, François, 2008. "Modelling vegetation dynamics in heterogeneous pasture-woodland landscapes," Ecological Modelling, Elsevier, vol. 217(1), pages 1-18.
    5. Vergara, Pablo M. & Hahn, Ingo, 2009. "Linking edge effects and patch size effects: Importance of matrix nest predators," Ecological Modelling, Elsevier, vol. 220(9), pages 1189-1196.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    2. Peringer, Alexander & Gillet, François & Rosenthal, Gert & Stoicescu, Ioana & Pătru-Stupariu, Ileana & Stupariu, Mihai-Sorin & Buttler, Alexandre, 2016. "Landscape-scale simulation experiments test Romanian and Swiss management guidelines for mountain pasture-woodland habitat diversity," Ecological Modelling, Elsevier, vol. 330(C), pages 41-49.
    3. Vitense, Kelsey & Wirsing, Aaron J. & Tyson, Rebecca C. & Anderson, James J., 2016. "Theoretical impacts of habitat loss and generalist predation on predator–prey cycles," Ecological Modelling, Elsevier, vol. 327(C), pages 85-94.
    4. Csaba Centeri & Dénes Saláta & Alfréd Szilágyi & György Orosz & Szilárd Czóbel & Viktor Grónás & Ferenc Gyulai & Eszter Kovács & Ákos Pető & Julianna Skutai & Zsolt Biró & Ákos Malatinszky, 2021. "Selected Good Practices in the Hungarian Agricultural Heritage," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    5. Zhang, Na & Jing, Yong-Cai & Liu, Cheng-Yu & Li, Yao & Shen, Jing, 2016. "A cellular automaton model for grasshopper population dynamics in Inner Mongolia steppe habitats," Ecological Modelling, Elsevier, vol. 329(C), pages 5-17.
    6. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.
    7. Peringer, Alexander & Buttler, Alexandre & Gillet, François & Pătru-Stupariu, Ileana & Schulze, Kiowa A. & Stupariu, Mihai-Sorin & Rosenthal, Gert, 2017. "Disturbance-grazer-vegetation interactions maintain habitat diversity in mountain pasture-woodlands," Ecological Modelling, Elsevier, vol. 359(C), pages 301-310.
    8. Schulze, Kiowa Alraune & Rosenthal, Gert & Peringer, Alexander, 2018. "Intermediate foraging large herbivores maintain semi-open habitats in wilderness landscape simulations," Ecological Modelling, Elsevier, vol. 379(C), pages 10-21.
    9. Bennie, Jonathan & Huntley, Brian & Wiltshire, Andrew & Hill, Mark O. & Baxter, Robert, 2008. "Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland," Ecological Modelling, Elsevier, vol. 216(1), pages 47-59.
    10. Inglis, Nicole C. & Vukomanovic, Jelena, 2020. "Climate change disproportionately affects visual quality of cultural ecosystem services in a mountain region," Ecosystem Services, Elsevier, vol. 45(C).
    11. Mittanck, Cody M. & Rogers, Paul C. & Ramsey, R. Douglas & Bartos, Dale L. & Ryel, Ronald J., 2014. "Exploring succession within aspen communities using a habitat-based modeling approach," Ecological Modelling, Elsevier, vol. 288(C), pages 203-212.
    12. Moulin, Thibault & Perasso, Antoine & Calanca, Pierluigi & Gillet, François, 2021. "DynaGraM: A process-based model to simulate multi-species plant community dynamics in managed grasslands," Ecological Modelling, Elsevier, vol. 439(C).
    13. Peringer, Alexander & Rosenthal, Gert, 2011. "Establishment patterns in a secondary tree line ecotone," Ecological Modelling, Elsevier, vol. 222(17), pages 3120-3131.
    14. Hyytiäinen, Kari & Lehtiniemi, Maiju & Niemi, Jarkko K. & Tikka, Kimmo, 2013. "An optimization framework for addressing aquatic invasive species," Ecological Economics, Elsevier, vol. 91(C), pages 69-79.
    15. Costanza, Jennifer K. & Hulcr, Jiri & Koch, Frank H. & Earnhardt, Todd & McKerrow, Alexa J. & Dunn, Rob R. & Collazo, Jaime A., 2012. "Simulating the effects of the southern pine beetle on regional dynamics 60 years into the future," Ecological Modelling, Elsevier, vol. 244(C), pages 93-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:16:p:1889-1896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.