IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i17p2024-2034.html
   My bibliography  Save this article

Modeling freshwater fish distributions using multiscale landscape data: A case study of six narrow range endemics

Author

Listed:
  • Hopkins, Robert L.
  • Burr, Brooks M.

Abstract

Species distribution models (SDMs) have become integral tools in scientific research and conservation planning. Despite progress in the assessment of various statistical models for use in SDMs, little has been done in way of evaluating appropriate ecological models. In this paper, we evaluate the multiscale filter framework as a suitable theoretical model for predicting freshwater fish distributions in the upper Green River system (Ohio River drainage), USA. The spatial distributions of six fishes with contrasting biogeographies were modeled using boosted regression trees and multiscale landscape data. Species biogeography did not appear to affect predictive performance and all models performed well statistically with receiver operating characteristic area under the curve (AUC) ranging from 0.87 to 0.98. Predictive maps show accurate estimations of ranges for five of six species based on historical collections. The relative influence of each type of environmental feature and spatial scale varied markedly with between species. A hierarchical effect was detected for narrowly distributed species. These species were highly influenced by soil composition at larger spatial scales and land use/land cover (LULC) patterns at more proximal scales. Conversely, LULC pattern was the most influential feature for widely distributed at all spatial scales. Using multiscale data capable of capturing hierarchical landscape influences allowed production of accurate predictive models and provided further insight into factors controlling freshwater fish distributions.

Suggested Citation

  • Hopkins, Robert L. & Burr, Brooks M., 2009. "Modeling freshwater fish distributions using multiscale landscape data: A case study of six narrow range endemics," Ecological Modelling, Elsevier, vol. 220(17), pages 2024-2034.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:17:p:2024-2034
    DOI: 10.1016/j.ecolmodel.2009.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009002920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuemmerlen, Mathias & Schmalz, Britta & Guse, Björn & Cai, Qinghua & Fohrer, Nicola & Jähnig, Sonja C., 2014. "Integrating catchment properties in small scale species distribution models of stream macroinvertebrates," Ecological Modelling, Elsevier, vol. 277(C), pages 77-86.
    2. Linwang Yuan & Zhaoyuan Yu & Lin Yi & Wen Luo & Shaofei Chen, 2014. "Multiscale Spatial Decomposition for Skew-Distributed Data with Parallel Spatial Kernel Smoothing," Environment and Planning B, , vol. 41(4), pages 613-636, August.
    3. Muñoz-Mas, R. & Martínez-Capel, F. & Alcaraz-Hernández, J.D. & Mouton, A.M., 2015. "Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?," Ecological Modelling, Elsevier, vol. 309, pages 72-81.
    4. Sacchelli, Sandro & De Meo, Isabella & Paletto, Alessandro, 2013. "Bioenergy production and forest multifunctionality: A trade-off analysis using multiscale GIS model in a case study in Italy," Applied Energy, Elsevier, vol. 104(C), pages 10-20.
    5. Pletterbauer, Florian & Graf, Wolfram & Schmutz, Stefan, 2016. "Effect of biotic dependencies in species distribution models: The future distribution of Thymallus thymallus under consideration of Allogamus auricollis," Ecological Modelling, Elsevier, vol. 327(C), pages 95-104.
    6. Boykin, Kenneth G. & Thompson, Bruce C. & Propeck-Gray, Suzanne, 2010. "Accuracy of gap analysis habitat models in predicting physical features for wildlife-habitat associations in the southwest U.S," Ecological Modelling, Elsevier, vol. 221(23), pages 2769-2775.
    7. Kärcher, Oskar & Frank, Karin & Walz, Ariane & Markovic, Danijela, 2019. "Scale effects on the performance of niche-based models of freshwater fish distributions," Ecological Modelling, Elsevier, vol. 405(C), pages 33-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    3. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    4. Marmion, Mathieu & Luoto, Miska & Heikkinen, Risto K. & Thuiller, Wilfried, 2009. "The performance of state-of-the-art modelling techniques depends on geographical distribution of species," Ecological Modelling, Elsevier, vol. 220(24), pages 3512-3520.
    5. Kaiping Wang & Weiqi Wang & Niyi Zha & Yue Feng & Chenlan Qiu & Yunlu Zhang & Jia Ma & Rui Zhang, 2022. "Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    6. Sellami, Mohamed Habib & Sifaoui, Mohamed Salah, 2008. "Modelling of heat and mass transfer inside a traditional oasis: Experimental validation," Ecological Modelling, Elsevier, vol. 210(1), pages 144-154.
    7. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    8. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    9. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    10. Lyndsie S Wszola & Victoria L Simonsen & Erica F Stuber & Caitlyn R Gillespie & Lindsey N Messinger & Karie L Decker & Jeffrey J Lusk & Christopher F Jorgensen & Andrew A Bishop & Joseph J Fontaine, 2017. "Translating statistical species-habitat models to interactive decision support tools," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    11. Basille, Mathieu & Calenge, Clément & Marboutin, Éric & Andersen, Reidar & Gaillard, Jean-Michel, 2008. "Assessing habitat selection using multivariate statistics: Some refinements of the ecological-niche factor analysis," Ecological Modelling, Elsevier, vol. 211(1), pages 233-240.
    12. Rufino, Marta M. & Albouy, Camille & Brind'Amour, Anik, 2021. "Which spatial interpolators I should use? A case study applying to marine species," Ecological Modelling, Elsevier, vol. 449(C).
    13. Mouton, Ans M. & De Baets, Bernard & Van Broekhoven, Ester & Goethals, Peter L.M., 2009. "Prevalence-adjusted optimisation of fuzzy models for species distribution," Ecological Modelling, Elsevier, vol. 220(15), pages 1776-1786.
    14. Stoklosa, Jakub & Huang, Yih-Huei & Furlan, Elise & Hwang, Wen-Han, 2016. "On quadratic logistic regression models when predictor variables are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 109-121.
    15. Suárez-Seoane, Susana & García de la Morena, Eladio L. & Morales Prieto, Manuel B. & Osborne, Patrick E. & de Juana, Eduardo, 2008. "Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution," Ecological Modelling, Elsevier, vol. 219(1), pages 17-29.
    16. Pie, Marcio R. & Meyer, Andreas L.S. & Firkowski, Carina R. & Ribeiro, Luiz F. & Bornschein, Marcos R., 2013. "Understanding the mechanisms underlying the distribution of microendemic montane frogs (Brachycephalus spp., Terrarana: Brachycephalidae) in the Brazilian Atlantic Rainforest," Ecological Modelling, Elsevier, vol. 250(C), pages 165-176.
    17. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    18. Yang, Xue-Qing & Kodikara, Gayantha R.L. & Luedeling, Eike & Yang, Xue-Fei & He, Jun & Liu, Pei-gui & Xu, Jian-Chu, 2012. "Looking below the ground: Prediction of Tuber indicum habitat using the Weights of Evidence method," Ecological Modelling, Elsevier, vol. 247(C), pages 27-39.
    19. Rabin Chakrabortty & Subodh Chandra Pal & Mehebub Sahana & Ayan Mondal & Jie Dou & Binh Thai Pham & Ali P. Yunus, 2020. "Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1259-1294, November.
    20. Sahragard, H.P. & Chahouki, M.A. Zare, 2015. "An evaluation of predictive habitat models performance of plant species in Hoze soltan rangelands of Qom province," Ecological Modelling, Elsevier, vol. 309, pages 64-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:17:p:2024-2034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.