IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v204y2007i1p85-92.html
   My bibliography  Save this article

Macrophyte–phytoplankton interactions: The relative importance of allelopathy versus other factors

Author

Listed:
  • Mulderij, Gabi
  • Van Nes, Egbert H.
  • Van Donk, Ellen

Abstract

Submerged aquatic macrophytes are important in shallow aquatic ecosystems because they stabilize the macrophyte-dominated state by increasing water transparency in various ways. One of these is the excretion of allelopathic substances inhibitory to phytoplankton, but it is still controversial whether this mechanism can be important in the field. We developed a model that describes phytoplankton growth including the effects of two different macrophytes (Chara sp. and Stratiotes aloides), which are both known to excrete allelopathic substances. With this model we analysed singular and combined effects of shading (1), sediment resuspension (2), competition for nutrients (3) and allelopathy (4) on the development of phytoplankton.

Suggested Citation

  • Mulderij, Gabi & Van Nes, Egbert H. & Van Donk, Ellen, 2007. "Macrophyte–phytoplankton interactions: The relative importance of allelopathy versus other factors," Ecological Modelling, Elsevier, vol. 204(1), pages 85-92.
  • Handle: RePEc:eee:ecomod:v:204:y:2007:i:1:p:85-92
    DOI: 10.1016/j.ecolmodel.2006.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380006006600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2006.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jef Huisman & Franz J. Weissing, 1999. "Biodiversity of plankton by species oscillations and chaos," Nature, Nature, vol. 402(6760), pages 407-410, November.
    2. Jeff J. Hudson & William D. Taylor & David W. Schindler, 1999. "Planktonic nutrient regeneration and cycling efficiency in temperate lakes," Nature, Nature, vol. 400(6745), pages 659-661, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiancai Deng & Fang Chen & Weiping Hu & Xin Lu & Bin Xu & David P. Hamilton, 2019. "Variations in the Distribution of Chl- a and Simulation Using a Multiple Regression Model," IJERPH, MDPI, vol. 16(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashleigh, Brenda & DeAngelis, Donald L., 2007. "Conditions for coexistence of freshwater mussel species via partitioning of fish host resources," Ecological Modelling, Elsevier, vol. 201(2), pages 171-178.
    2. Pavão, D.C. & Elias, R.B. & Silva, L., 2019. "Comparison of discrete and continuum community models: Insights from numerical ecology and Bayesian methods applied to Azorean plant communities," Ecological Modelling, Elsevier, vol. 402(C), pages 93-106.
    3. Sergey Bartsev & Andrey Degermendzhi, 2023. "The Evolutionary Mechanism of Formation of Biosphere Closure," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    4. Marten Scheffer & Remi Vergnon & Egbert H van Nes & Jan G M Cuppen & Edwin T H M Peeters & Remko Leijs & Anders N Nilsson, 2015. "The Evolution of Functionally Redundant Species; Evidence from Beetles," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    5. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    6. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    7. López-Ruiz, Ricardo & Fournier-Prunaret, Danièle, 2009. "Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 334-347.
    8. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Chen, Fei & Taylor, William D., 2011. "A model of phosphorus cycling in the epilimnion of oligotrophic and mesotrophic lakes," Ecological Modelling, Elsevier, vol. 222(5), pages 1103-1111.
    10. Sudakov, Ivan & Vakulenko, Sergey A. & Bruun, John T., 2022. "Stochastic physics of species extinctions in a large population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    11. Malay Banerjee & Nayana Mukherjee & Vitaly Volpert, 2018. "Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey," Mathematics, MDPI, vol. 6(3), pages 1-13, March.
    12. Silverman, B. David, 2007. "Modeling the effect of growth rate and survivability trade-offs on species coexistence and spatial topology at a traveling invasive wave-front," Ecological Modelling, Elsevier, vol. 202(3), pages 454-464.
    13. Šajna, Nina & Kušar, Primož, 2014. "Modeling species fitness in competitive environments," Ecological Modelling, Elsevier, vol. 275(C), pages 31-36.
    14. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. S. Kartal & M. Kar & N. Kartal & F. Gurcan, 2016. "Modelling and analysis of a phytoplankton–zooplankton system with continuous and discrete time," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 22(6), pages 539-554, November.
    16. Ranjan, Ravi & Bagchi, Sumanta, 2016. "Functional response and body size in consumer–resource interactions: Unimodality favors facilitation," Theoretical Population Biology, Elsevier, vol. 110(C), pages 25-35.
    17. Yuan, Chi & Chesson, Peter, 2015. "The relative importance of relative nonlinearity and the storage effect in the lottery model," Theoretical Population Biology, Elsevier, vol. 105(C), pages 39-52.
    18. de Lima Filho, José A. & Vieira, Raphael J.A.G. & de Souza, Carlos A.M. & Ferreira, Fernando F. & de Oliveira, Viviane M., 2021. "Effects of habitat fragmentation on biodiversity patterns of ecosystems with resource competition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    19. Moroz, Irene M. & Cropp, Roger & Norbury, John, 2016. "Chaos in plankton models: Foraging strategy and seasonal forcing," Ecological Modelling, Elsevier, vol. 332(C), pages 103-111.
    20. Wang, Lin & Wang, Rui-Wu, 2022. "Host regulation and seasonality generate population chaos in a fig-wasp mutualism," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:204:y:2007:i:1:p:85-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.