IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v250y2025ics016517652500134x.html
   My bibliography  Save this article

Estimation and inference in a possibly multicointegrated system with a fixed number of instruments

Author

Listed:
  • Sun, Yixiao
  • Phillips, Peter C.B.
  • Kheifets, Igor L.

Abstract

This paper shows that the mixed normal asymptotic limit of the trend IV estimator with a fixed number of deterministic instruments (fTIV) holds in both singular (multicointegrated) and nonsingular cointegration systems, thereby relaxing the exogeneity condition in (Phillips and Kheifets, 2024, Theorem 1(ii)). The mixed normality of the limiting distribution of fTIV allows for asymptotically pivotal F and t tests about the cointegration parameters and for simple efficiency comparisons of the estimators for different numbers K of instruments, as well as comparisons with the trend IV estimator when K→∞ with the sample size.

Suggested Citation

  • Sun, Yixiao & Phillips, Peter C.B. & Kheifets, Igor L., 2025. "Estimation and inference in a possibly multicointegrated system with a fixed number of instruments," Economics Letters, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:ecolet:v:250:y:2025:i:c:s016517652500134x
    DOI: 10.1016/j.econlet.2025.112297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016517652500134X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2025.112297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(1), pages 116-142, February.
    2. Hwang, Jungbin & Sun, Yixiao, 2018. "SIMPLE, ROBUST, AND ACCURATE F AND t TESTS IN COINTEGRATED SYSTEMS," Econometric Theory, Cambridge University Press, vol. 34(5), pages 949-984, October.
    3. Hwang, Jungbin & Sun, Yixiao, 2017. "Asymptotic F and t tests in an efficient GMM setting," Journal of Econometrics, Elsevier, vol. 198(2), pages 277-295.
    4. Phillips, Peter C.B., 2014. "Optimal estimation of cointegrated systems with irrelevant instruments," Journal of Econometrics, Elsevier, vol. 178(P2), pages 210-224.
    5. Phillips, Peter C.B. & Kheifets, Igor L., 2024. "High-dimensional IV cointegration estimation and inference," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Yixiao Sun, 2023. "Some Extensions of AsymptoticFandtTheory in Nonstationary Regressions," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Theory, volume 45, pages 319-347, Emerald Group Publishing Limited.
    7. Peter C.B. Phillips & Igor Kheifets, 2021. "On Multicointegration," Cowles Foundation Discussion Papers 2306, Cowles Foundation for Research in Economics, Yale University.
    8. Vogelsang, Timothy J. & Wagner, Martin, 2014. "Integrated modified OLS estimation and fixed-b inference for cointegrating regressions," Journal of Econometrics, Elsevier, vol. 178(2), pages 741-760.
    9. Ulrich K. Müller & Mark W. Watson, 2018. "Long†Run Covariability," Econometrica, Econometric Society, vol. 86(3), pages 775-804, May.
    10. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jungbin Hwang & Yixiao Sun, 2025. "Asymptotic F and t Tests in Cointegrating Regressions with Asymptotically Homogeneous Functions," Working papers 2025-01, University of Connecticut, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, Peter C.B. & Kheifets, Igor L., 2024. "High-dimensional IV cointegration estimation and inference," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Hwang, Jungbin & Sun, Yixiao, 2018. "SIMPLE, ROBUST, AND ACCURATE F AND t TESTS IN COINTEGRATED SYSTEMS," Econometric Theory, Cambridge University Press, vol. 34(5), pages 949-984, October.
    3. Jungbin Hwang & Yixiao Sun, 2025. "Asymptotic F and t Tests in Cointegrating Regressions with Asymptotically Homogeneous Functions," Working papers 2025-01, University of Connecticut, Department of Economics.
    4. Peter C.B. Phillips & Igor Kheifets, 2021. "On Multicointegration," Cowles Foundation Discussion Papers 2306, Cowles Foundation for Research in Economics, Yale University.
    5. Peter C. B. Phillips & Xiaohu Wang & Yonghui Zhang, 2019. "HAR Testing for Spurious Regression in Trend," Econometrics, MDPI, vol. 7(4), pages 1-28, December.
    6. Jungbin Hwang & Gonzalo Valdés, 2020. "Low Frequency Cointegrating Regression in the Presence of Local to Unity Regressors and Unknown Form of Serial Dependence," Working papers 2020-03, University of Connecticut, Department of Economics, revised Aug 2020.
    7. Pellatt, Daniel F. & Sun, Yixiao, 2023. "Asymptotic F test in regressions with observations collected at high frequency over long span," Journal of Econometrics, Elsevier, vol. 235(2), pages 1281-1309.
    8. Pellatt , Daniel & Sun, Yixiao, 2020. "Asymptotic F test in Regressions with Observations Collected at High Frequency over Long Span," University of California at San Diego, Economics Working Paper Series qt19f0d9wz, Department of Economics, UC San Diego.
    9. Hwang, Jungbin & Valdés, Gonzalo, 2023. "Finite-sample corrected inference for two-step GMM in time series," Journal of Econometrics, Elsevier, vol. 234(1), pages 327-352.
    10. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    11. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    12. Phillips, Peter C.B., 2014. "Optimal estimation of cointegrated systems with irrelevant instruments," Journal of Econometrics, Elsevier, vol. 178(P2), pages 210-224.
    13. Igor Kheifets & Peter C.B. Phillips, 2019. "Fully Modified Least Squares for Multicointegrated Systems," Cowles Foundation Discussion Papers 2210, Cowles Foundation for Research in Economics, Yale University.
    14. Kheifets, Igor L. & Phillips, Peter C.B., 2023. "Fully modified least squares cointegrating parameter estimation in multicointegrated systems," Journal of Econometrics, Elsevier, vol. 232(2), pages 300-319.
    15. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    16. Jan Mutl & Leopold Sögner, 2019. "Parameter estimation and inference with spatial lags and cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 38(6), pages 597-635, July.
    17. Liu, Cheng & Sun, Yixiao, 2019. "A simple and trustworthy asymptotic t test in difference-in-differences regressions," Journal of Econometrics, Elsevier, vol. 210(2), pages 327-362.
    18. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 3-20, February.
    19. Kong, Jianning & Phillips, Peter C.B. & Sul, Donggyu, 2019. "Weak σ-convergence: Theory and applications," Journal of Econometrics, Elsevier, vol. 209(2), pages 185-207.
    20. Casini, Alessandro, 2024. "The fixed-b limiting distribution and the ERP of HAR tests under nonstationarity," Journal of Econometrics, Elsevier, vol. 238(2).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:250:y:2025:i:c:s016517652500134x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.