IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v42y2002i1-2p9-26.html
   My bibliography  Save this article

The contemporary European copper cycle: The characterization of technological copper cycles

Author

Listed:
  • Graedel, T. E.
  • Bertram, M.
  • Fuse, K.
  • Gordon, R. B.
  • Lifset, R.
  • Rechberger, H.
  • Spatari, S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Graedel, T. E. & Bertram, M. & Fuse, K. & Gordon, R. B. & Lifset, R. & Rechberger, H. & Spatari, S., 2002. "The contemporary European copper cycle: The characterization of technological copper cycles," Ecological Economics, Elsevier, vol. 42(1-2), pages 9-26, August.
  • Handle: RePEc:eee:ecolec:v:42:y:2002:i:1-2:p:9-26
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(02)00101-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijn, Rene & Huele, Ruben & van der Voet, Ester, 2000. "Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden," Ecological Economics, Elsevier, vol. 32(2), pages 241-254, February.
    2. Rechberger, H. & Graedel, T. E., 2002. "The contemporary European copper cycle: statistical entropy analysis," Ecological Economics, Elsevier, vol. 42(1-2), pages 59-72, August.
    3. Graedel, T. E., 2002. "The contemporary European copper cycle: introduction," Ecological Economics, Elsevier, vol. 42(1-2), pages 5-7, August.
    4. Bertram, M. & Graedel, T. E. & Rechberger, H. & Spatari, S., 2002. "The contemporary European copper cycle: waste management subsystem," Ecological Economics, Elsevier, vol. 42(1-2), pages 43-57, August.
    5. Spatari, S. & Bertram, M. & Fuse, K. & Graedel, T. E. & Rechberger, H., 2002. "The contemporary European copper cycle: 1 year stocks and flows," Ecological Economics, Elsevier, vol. 42(1-2), pages 27-42, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daigo, Ichiro & Hashimoto, Susumu & Matsuno, Yasunari & Adachi, Yoshihiro, 2009. "Material stocks and flows accounting for copper and copper-based alloys in Japan," Resources, Conservation & Recycling, Elsevier, vol. 53(4), pages 208-217.
    2. Taulo, J.L. & Sebitosi, A.B., 2016. "Material and energy flow analysis of the Malawian tea industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1337-1350.
    3. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    4. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    5. Torsten Hummen & Stefanie Hellweg & Ramin Roshandel, 2023. "Optimizing Lifespan of Circular Products: A Generic Dynamic Programming Approach for Energy-Using Products," Energies, MDPI, vol. 16(18), pages 1-27, September.
    6. Fred Compart & Martin Gräbner, 2024. "Using Yield and Entropy-Based Characteristics for Circular Economy," Circular Economy and Sustainability, Springer, vol. 4(3), pages 2169-2197, September.
    7. Truttmann, Nina & Rechberger, Helmut, 2006. "Contribution to resource conservation by reuse of electrical and electronic household appliances," Resources, Conservation & Recycling, Elsevier, vol. 48(3), pages 249-262.
    8. Geyer, R. & Davis, J. & Ley, J. & He, J. & Clift, R. & Kwan, A. & Sansom, M. & Jackson, T., 2007. "Time-dependent material flow analysis of iron and steel in the UK," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 101-117.
    9. Luca Ciacci & Ivano Vassura & Fabrizio Passarini, 2017. "Urban Mines of Copper: Size and Potential for Recycling in the EU," Resources, MDPI, vol. 6(1), pages 1-14, January.
    10. Simões, Pedro & Marques, Rui Cunha, 2011. "How does the operational environment affect utility performance? A parametric study on the waste sector," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 695-702.
    11. Tanimoto, Armando H. & Gabarrell Durany, Xavier & Villalba, Gara & Pires, Armando Caldeira, 2010. "Material flow accounting of the copper cycle in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 55(1), pages 20-28.
    12. Helga Weisz & Heinz Schandl, 2008. "Materials Use Across World Regions," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 629-636, October.
    13. Ling Zhang & Zengwei Yuan & Jun Bi, 2012. "Estimation of Copper In‐use Stocks in Nanjing, China," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 191-202, April.
    14. Nadine Rötzer & Mario Schmidt, 2020. "Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change," Resources, MDPI, vol. 9(4), pages 1-31, April.
    15. Cecere, Grazia & Martinelli, Arianna, 2017. "Drivers of knowledge accumulation in electronic waste management: An analysis of publication data," Research Policy, Elsevier, vol. 46(5), pages 925-938.
    16. Kapur, Amit, 2006. "The future of the red metal—A developing country perspective from India," Resources, Conservation & Recycling, Elsevier, vol. 47(2), pages 160-182.
    17. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    18. Esther Thiébaud & Lorenz M. Hilty & Mathias Schluep & Heinz W. Böni & Martin Faulstich, 2018. "Where Do Our Resources Go? Indium, Neodymium, and Gold Flows Connected to the Use of Electronic Equipment in Switzerland," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    19. Klinglmair, Manfred & Fellner, Johann, 2011. "Historical iron and steel recovery in times of raw material shortage: The case of Austria during World War I," Ecological Economics, Elsevier, vol. 72(C), pages 179-187.
    20. Shaoli Liu & Xin Li & Minxi Wang, 2016. "Analysis of Aluminum Resource Supply Structure and Guarantee Degree in China Based on Sustainable Perspective," Sustainability, MDPI, vol. 8(12), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:42:y:2002:i:1-2:p:9-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.