IDEAS home Printed from https://ideas.repec.org/a/eee/ecoedu/v16y1997i2p155-161.html
   My bibliography  Save this article

Evaluating school facility capacity and attendance boundaries using a large-scale assignment algorithm

Author

Listed:
  • Elizondo, Rodolpho
  • Andrew Boyd, E.
  • Beauregard, Maxwell

Abstract

No abstract is available for this item.

Suggested Citation

  • Elizondo, Rodolpho & Andrew Boyd, E. & Beauregard, Maxwell, 1997. "Evaluating school facility capacity and attendance boundaries using a large-scale assignment algorithm," Economics of Education Review, Elsevier, vol. 16(2), pages 155-161, April.
  • Handle: RePEc:eee:ecoedu:v:16:y:1997:i:2:p:155-161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0272-7757(96)00056-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter C. Belford & H. Donald Ratliff, 1972. "A Network-Flow Model for Racially Balancing Schools," Operations Research, INFORMS, vol. 20(3), pages 619-628, June.
    2. Allen D. Franklin & Ernest Koenigsberg, 1973. "Computed School Assignments in a Large District," Operations Research, INFORMS, vol. 21(2), pages 413-426, April.
    3. L. R. Ford & D. R. Fulkerson, 1958. "Constructing Maximal Dynamic Flows from Static Flows," Operations Research, INFORMS, vol. 6(3), pages 419-433, June.
    4. Clarke, S. & Surkis, J., 1968. "An operations research approach to racial desegregation of school systems," Socio-Economic Planning Sciences, Elsevier, vol. 1(3), pages 259-272, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F Caro & T Shirabe & M Guignard & A Weintraub, 2004. "School redistricting: embedding GIS tools with integer programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 836-849, August.
    2. Bouzarth, Elizabeth L. & Forrester, Richard & Hutson, Kevin R. & Reddoch, Lattie, 2018. "Assigning students to schools to minimize both transportation costs and socioeconomic variation between schools," Socio-Economic Planning Sciences, Elsevier, vol. 64(C), pages 1-8.
    3. Mayerle, Sérgio F. & Rodrigues, Hidelbrando F. & Neiva de Figueiredo, João & De Genaro Chiroli, Daiane M., 2022. "Optimal student/school/class/teacher/classroom matching to support efficient public school system resource allocation," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    4. Lemberg, David S. & Church, Richard L., 2000. "The school boundary stability problem over time," Socio-Economic Planning Sciences, Elsevier, vol. 34(3), pages 159-176, September.
    5. Yuya Higashikawa & Naoki Katoh, 2019. "A Survey on Facility Location Problems in Dynamic Flow Networks," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 163-208, October.
    6. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    7. Yamada, Takeo & Nasu, Yasushi, 2000. "Heuristic and exact algorithms for the simultaneous assignment problem," European Journal of Operational Research, Elsevier, vol. 123(3), pages 531-542, June.
    8. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    9. Lara, Cristiana L. & Koenemann, Jochen & Nie, Yisu & de Souza, Cid C., 2023. "Scalable timing-aware network design via lagrangian decomposition," European Journal of Operational Research, Elsevier, vol. 309(1), pages 152-169.
    10. Brian Lunday & Hanif Sherali & Kevin Lunday, 2012. "The coastal seaspace patrol sector design and allocation problem," Computational Management Science, Springer, vol. 9(4), pages 483-514, November.
    11. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    12. S. Khodayifar & M. A. Raayatpanah & P. M. Pardalos, 2019. "A polynomial time algorithm for the minimum flow problem in time-varying networks," Annals of Operations Research, Springer, vol. 272(1), pages 29-39, January.
    13. Wei, Ran & Feng, Xin & Rey, Sergio & Knaap, Elijah, 2022. "Reducing racial segregation of public school districts," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    14. Malczewski, Jacek & Jackson, Marlene, 2000. "Multicriteria spatial allocation of educational resources: an overview," Socio-Economic Planning Sciences, Elsevier, vol. 34(3), pages 219-235, September.
    15. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric, 2021. "A time-expanded network reduction matheuristic for the logistics service network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    16. Urmila Pyakurel & Tanka Nath Dhamala & Stephan Dempe, 2017. "Efficient continuous contraflow algorithms for evacuation planning problems," Annals of Operations Research, Springer, vol. 254(1), pages 335-364, July.
    17. Ronald Koch & Ebrahim Nasrabadi & Martin Skutella, 2011. "Continuous and discrete flows over time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(3), pages 301-337, June.
    18. Yosuke Hanawa & Yuya Higashikawa & Naoyuki Kamiyama & Naoki Katoh & Atsushi Takizawa, 2018. "The mixed evacuation problem," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1299-1314, November.
    19. Anke Stieber & Armin Fügenschuh, 2022. "Dealing with time in the multiple traveling salespersons problem with moving targets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 991-1017, September.
    20. R L Church & O B Schoepfle, 1993. "The Choice Alternative to School Assignment," Environment and Planning B, , vol. 20(4), pages 447-457, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecoedu:v:16:y:1997:i:2:p:155-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/econedurev .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.