Grouped variable importance with random forests and application to multiple functional data analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2015.04.002
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
- Amato, U. & Antoniadis, A. & De Feis, I., 2006. "Dimension reduction in functional regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2422-2446, May.
- Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
- Antoniadis, Anestis & Bigot, Jeremie & Sapatinas, Theofanis, 2001. "Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 6(i06).
- Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
- Matsui, Hidetoshi & Konishi, Sadanori, 2011. "Variable selection for functional regression models via the L1 regularization," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3304-3310, December.
- Tomasz Górecki & Łukasz Smaga, 2015. "A comparison of tests for the one-way ANOVA problem for functional data," Computational Statistics, Springer, vol. 30(4), pages 987-1010, December.
- Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pedro Delicado, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 334-337, June.
- Patrick J. Comer & Jon C. Hak & Marion S. Reid & Stephanie L. Auer & Keith A. Schulz & Healy H. Hamilton & Regan L. Smyth & Matthew M. Kling, 2019. "Habitat Climate Change Vulnerability Index Applied to Major Vegetation Types of the Western Interior United States," Land, MDPI, vol. 8(7), pages 1-27, July.
- Neska Haouij & Jean-Michel Poggi & Raja Ghozi & Sylvie Sevestre-Ghalila & Mériem Jaïdane, 2019. "Random forest-based approach for physiological functional variable selection for driver’s stress level classification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 157-185, March.
- Xiaomeng Ju & Matías Salibián-Barrera, 2024. "Tree-based boosting with functional data," Computational Statistics, Springer, vol. 39(3), pages 1587-1620, May.
- Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
- Olivia Metcalf & Laura Finlayson-Short & Karen E Lamb & Sophie Zaloumis & Meaghan L O’Donnell & Tianchen Qian & Tracey Varker & Sean Cowlishaw & Melissa Brotman & David Forbes, 2022. "Ambulatory assessment to predict problem anger in trauma-affected adults: Study protocol," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-8, December.
- A. Poterie & J.-F. Dupuy & V. Monbet & L. Rouvière, 2019. "Classification tree algorithm for grouped variables," Computational Statistics, Springer, vol. 34(4), pages 1613-1648, December.
- Antoniadis, Anestis & Lambert-Lacroix, Sophie & Poggi, Jean-Michel, 2021. "Random forests for global sensitivity analysis: A selective review," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
- T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
- Simon Valentin & Maximilian Harkotte & Tzvetan Popov, 2020. "Interpreting neural decoding models using grouped model reliance," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-17, January.
- Yen-Chun Huang & Chieh-Wen Ho & Wen-Ru Chou & Mingchih Chen, 2025. "A framework to predict second primary lung cancer patients by using ensemble models," Annals of Operations Research, Springer, vol. 348(1), pages 373-397, May.
- Epifanio, Irene, 2016. "Functional archetype and archetypoid analysis," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 24-34.
- Christophe Denis & Charlotte Dion & Miguel Martinez, 2020. "Consistent procedures for multiclass classification of discrete diffusion paths," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 516-554, June.
- Pedro Delicado & Daniel Peña, 2023. "Understanding complex predictive models with ghost variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 107-145, March.
- Liu, Zhenkun & De Bock, Koen W. & Zhang, Lifang, 2025. "Explainable profit-driven hotel booking cancellation prediction based on heterogeneous stacking-based ensemble classification," European Journal of Operational Research, Elsevier, vol. 321(1), pages 284-301.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
- Łukasz Smaga & Hidetoshi Matsui, 2018. "A note on variable selection in functional regression via random subspace method," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 455-477, August.
- Moindjié, Issam-Ali & Preda, Cristian & Dabo-Niang, Sophie, 2025. "Fusion regression methods with repeated functional data," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
- Andreas Groll & Trevor Hastie & Gerhard Tutz, 2017. "Selection of effects in Cox frailty models by regularization methods," Biometrics, The International Biometric Society, vol. 73(3), pages 846-856, September.
- Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
- Mirosław Krzyśko & Łukasz Smaga, 2017. "An Application Of Functional Multivariate Regression Model To Multiclass Classification," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 433-442, September.
- Mohit Agrawal & Joseph G. Altonji & Richard K. Mansfield, 2019.
"Quantifying Family, School, and Location Effects in the Presence of Complementarities and Sorting,"
Journal of Labor Economics, University of Chicago Press, vol. 37(S1), pages 11-83.
- Mohit Agrawal & Joseph G. Altonji & Richard K. Mansfield, 2016. "Quantifying Family, School, and Location Effects in the Presence of Complementarities and Sorting," NBER Chapters, in: Youth Labor Markets, National Bureau of Economic Research, Inc.
- Mohit Agrawal & Joseph G. Altonji & Richard K. Mansfield, 2018. "Quantifying Family, School, and Location Effects in the Presence of Complementarities and Sorting," NBER Working Papers 25167, National Bureau of Economic Research, Inc.
- Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
- Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
- Choi, Sungwoo & Park, Junyong, 2014. "Nonparametric additive model with grouped lasso and maximizing area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 313-325.
- Xian Zhang & Dingtao Peng, 2022. "Solving constrained nonsmooth group sparse optimization via group Capped- $$\ell _1$$ ℓ 1 relaxation and group smoothing proximal gradient algorithm," Computational Optimization and Applications, Springer, vol. 83(3), pages 801-844, December.
- Caner, Mehmet, 2023.
"Generalized linear models with structured sparsity estimators,"
Journal of Econometrics, Elsevier, vol. 236(2).
- Mehmet Caner, 2021. "Generalized Linear Models with Structured Sparsity Estimators," Papers 2104.14371, arXiv.org.
- Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
- Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
- A. Antoniadis & I. Gijbels & S. Lambert-Lacroix, 2014. "Penalized estimation in additive varying coefficient models using grouped regularization," Statistical Papers, Springer, vol. 55(3), pages 727-750, August.
- Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
- Osamu Komori & Shinto Eguchi & John B. Copas, 2015. "Generalized t-statistic for two-group classification," Biometrics, The International Biometric Society, vol. 71(2), pages 404-416, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:90:y:2015:i:c:p:15-35. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v90y2015icp15-35.html