IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v62y2013icp171-180.html
   My bibliography  Save this article

Estimation of the accelerated failure time frailty model under generalized gamma frailty

Author

Listed:
  • Chen, Pengcheng
  • Zhang, Jiajia
  • Zhang, Riquan

Abstract

The frailty model is one of the most popular models used to analyze clustered failure time data, where the frailty term is used to assess an association within each cluster. The frailty model based on the semiparametric accelerated failure time model attracts less attention than the one based on the proportional hazards model due to its computational difficulties. In this paper, we relax the frailty distribution to the generalized gamma distribution, which can accommodate most of the popular frailty assumptions. The estimation procedure is based on the EM-like algorithm by employing the MCMC algorithm in the E-step and the profile likelihood estimation method in the M-step. We conduct an extensive simulation study and find that there is a significant gain in the proposed method with respect to the estimation of the frailty variance with a slight loss of accuracy in the parameter estimates. For illustration, we apply the proposed model and method to a data set of sublingual nitroglycerin and oral isosorbide dinitrate on angina pectoris of coronary heart disease patients.

Suggested Citation

  • Chen, Pengcheng & Zhang, Jiajia & Zhang, Riquan, 2013. "Estimation of the accelerated failure time frailty model under generalized gamma frailty," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 171-180.
  • Handle: RePEc:eee:csdana:v:62:y:2013:i:c:p:171-180
    DOI: 10.1016/j.csda.2013.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313000315
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    2. Peng, Yingwei & Zhang, Jiajia, 2008. "Identifiability of a mixture cure frailty model," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2604-2608, November.
    3. Zeng, Donglin & Lin, D.Y., 2007. "Efficient Estimation for the Accelerated Failure Time Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1387-1396, December.
    4. Zhang, Jiajia & Peng, Yingwei, 2007. "An alternative estimation method for the accelerated failure time frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4413-4423, May.
    5. Z. Jin & D. Y. Lin & Z. Ying, 2006. "Rank Regression Analysis of Multivariate Failure Time Data Based on Marginal Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 1-23, March.
    6. Yu, Binbing, 2006. "Estimation of shared Gamma frailty models by a modified EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 463-474, January.
    7. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    8. Zhezhen Jin & D. Y. Lin & Zhiliang Ying, 2006. "On least-squares regression with censored data," Biometrika, Biometrika Trust, vol. 93(1), pages 147-161, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sukhmani Sidhu & Kanchan Jain & Suresh Kumar Sharma, 2018. "Bayesian estimation of generalized gamma shared frailty model," Computational Statistics, Springer, vol. 33(1), pages 277-297, March.
    2. Luiza S. C. Piancastelli & Wagner Barreto-Souza & Vinícius D. Mayrink, 2021. "Generalized inverse-Gaussian frailty models with application to TARGET neuroblastoma data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 979-1010, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    2. Lea Kats & Malka Gorfine, 2023. "An accelerated failure time regression model for illness–death data: A frailty approach," Biometrics, The International Biometric Society, vol. 79(4), pages 3066-3081, December.
    3. Bo Liu & Wenbin Lu & Jiajia Zhang, 2014. "Accelerated intensity frailty model for recurrent events data," Biometrics, The International Biometric Society, vol. 70(3), pages 579-587, September.
    4. Xu, Linzhi & Zhang, Jiajia, 2010. "Multiple imputation method for the semiparametric accelerated failure time mixture cure model," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1808-1816, July.
    5. Zhang, Jiajia & Peng, Yingwei, 2009. "Crossing hazard functions in common survival models," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2124-2130, October.
    6. Wagner Barreto-Souza & Vinícius Diniz Mayrink, 2019. "Semiparametric generalized exponential frailty model for clustered survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 679-701, June.
    7. Fan, Caiyun & Lu, Wenbin & Zhou, Yong, 2021. "Testing error heterogeneity in censored linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    8. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    9. Ying Ding & Bin Nan, 2015. "Estimating Mean Survival Time: When is it Possible?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 397-413, June.
    10. Yu, Lili & Zhao, Yichuan, 2024. "Laplace approximated quasi-likelihood method for heteroscedastic survival data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    11. Lili Yu & Liang Liu & Ding-Geng(Din) Chen, 2013. "Weighted Least-Squares Method for Right-Censored Data in Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 69(2), pages 358-365, June.
    12. Zou, Yubo & Zhang, Jiajia & Qin, Guoyou, 2011. "A semiparametric accelerated failure time partial linear model and its application to breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1479-1487, March.
    13. Tafese Ashine & Habte Tadesse Likassa & Ding-Geng Chen, 2024. "Estimating Time-to-Death and Determining Risk Predictors for Heart Failure Patients: Bayesian AFT Shared Frailty Models with the INLA Method," Stats, MDPI, vol. 7(3), pages 1-18, September.
    14. Jeongjin Lee & Taehwa Choi & Sangbum Choi, 2024. "Censored broken adaptive ridge regression in high-dimension," Computational Statistics, Springer, vol. 39(6), pages 3457-3482, September.
    15. Wang, Antai & Zhang, Yilong & Shao, Yongzhao, 2017. "On the likelihood of mixture cure models," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 51-55.
    16. L. Altstein & G. Li, 2013. "Latent Subgroup Analysis of a Randomized Clinical Trial through a Semiparametric Accelerated Failure Time Mixture Model," Biometrics, The International Biometric Society, vol. 69(1), pages 52-61, March.
    17. Wenjing Yin & Sihai Dave Zhao & Feng Liang, 2022. "Bayesian penalized Buckley-James method for high dimensional bivariate censored regression models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 282-318, April.
    18. Shuling Liu & Amita K. Manatunga & Limin Peng & Michele Marcus, 2017. "A joint modeling approach for multivariate survival data with random length," Biometrics, The International Biometric Society, vol. 73(2), pages 666-677, June.
    19. Jin, Zhezhen & He, Wenqing, 2016. "Local linear regression on correlated survival data," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 285-294.
    20. Yijian Huang, 2013. "Fast Censored Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 789-806, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:62:y:2013:i:c:p:171-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.