IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Analysis of presence-only data via semi-supervised learning approaches

Listed author(s):
  • Wang, Junhui
  • Fang, Yixin
Registered author(s):

    Presence-only data occur in a classification, which consist of a sample of observations from the presence class and a large number of background observations with unknown presence/absence. Since absence data are generally unavailable, conventional semi-supervised learning approaches are no longer appropriate as they tend to degenerate and assign all observations to the presence class. In this article, we propose a generalized class balance constraint, which can be equipped with semi-supervised learning approaches to prevent them from degeneration. Furthermore, to circumvent the difficulty of model tuning with presence-only data, a selection criterion based on classification stability is developed, which measures the robustness of any given classification algorithm against the sampling randomness. The effectiveness of the proposed approach is demonstrated through a variety of simulated examples, along with an application to gene function prediction.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 59 (2013)
    Issue (Month): C ()
    Pages: 134-143

    in new window

    Handle: RePEc:eee:csdana:v:59:y:2013:i:c:p:134-143
    DOI: 10.1016/j.csda.2012.10.007
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Junhui Wang & Xiaotong Shen & Yufeng Liu, 2008. "Probability estimation for large-margin classifiers," Biometrika, Biometrika Trust, vol. 95(1), pages 149-167.
    2. Nicolai Meinshausen & Peter B├╝hlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473.
    3. Gill Ward & Trevor Hastie & Simon Barry & Jane Elith & John R. Leathwick, 2009. "Presence-Only Data and the EM Algorithm," Biometrics, The International Biometric Society, vol. 65(2), pages 554-563, 06.
    4. Junhui Wang, 2010. "Consistent selection of the number of clusters via crossvalidation," Biometrika, Biometrika Trust, vol. 97(4), pages 893-904.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:59:y:2013:i:c:p:134-143. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.