IDEAS home Printed from
   My bibliography  Save this article

Testing the significance of index parameters in varying-coefficient single-index models


  • Wong, Heung
  • Zhang, Riquan
  • Leung, Bartholomew
  • Huang, Zhensheng


The varying-coefficient single-index models (VCSIMs) form a class of very flexible and general dimension reduction models, which contain many important regression models such as partially linear models, pure single-index models, partially linear single-index models, varying-coefficient models and so on as special examples. However, the testing problems of the index parameter of the VCSIM have not been very well developed, due partially to the complexity of the models. To this end, based on the estimators obtained by the local linear method and the backfitting technique, we propose the generalized F-type test method to deal with the testing problems of the index parameters of the VCSIM. It is shown that under the null hypothesis the proposed test statistic follows asymptotically a χ2-distribution with the scale constant and the degrees of freedom being independent of the nuisance parameters or functions, which is called the Wilks phenomenon. Simulated data and real data examples are used to illustrate our proposed methodology.

Suggested Citation

  • Wong, Heung & Zhang, Riquan & Leung, Bartholomew & Huang, Zhensheng, 2013. "Testing the significance of index parameters in varying-coefficient single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 297-308.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:297-308
    DOI: 10.1016/j.csda.2012.07.002

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single-index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570.
    2. Fan, Jianqing & Jiang, Jiancheng, 2005. "Nonparametric Inferences for Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 890-907, September.
    3. Wong, Heung & Ip, Wai-cheung & Zhang, Riquan, 2008. "Varying-coefficient single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1458-1476, January.
    4. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:297-308. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.