IDEAS home Printed from
   My bibliography  Save this article

A new class of semiparametric semivariogram and nugget estimators


  • Carmack, Patrick S.
  • Spence, Jeffrey S.
  • Schucany, William R.
  • Gunst, Richard F.
  • Lin, Qihua
  • Haley, Robert W.


Several authors have proposed nonparametric semivariogram estimators. Shapiro and Botha (1991) did so by application of Bochner’s theorem and Cherry et al. (1996) further investigated this technique where it performed favorably against parametric estimators even when data were generated under the parametric model. While the former makes allowances for a prescribed nugget and the latter outlines a possible approach, neither of these demonstrate nugget estimation in practice, which is essential to spatial modeling and proper statistical inference. We propose a modified form of this method, which admits practical nugget estimation and broadens the basis. This is achieved by a simple change to the basis and an appropriate restriction of the node space as dictated by the first root of the Bessel function of the first kind of order ν. The efficacy of this new unsupervised semiparametric method is demonstrated via application and simulation, where it is shown to be comparable with correctly specified parametric models while outperforming misspecified ones. We conclude with remarks about selecting the appropriate basis and node space definition.

Suggested Citation

  • Carmack, Patrick S. & Spence, Jeffrey S. & Schucany, William R. & Gunst, Richard F. & Lin, Qihua & Haley, Robert W., 2012. "A new class of semiparametric semivariogram and nugget estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1737-1747.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1737-1747
    DOI: 10.1016/j.csda.2011.10.017

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Shapiro, A. & Botha, J. D., 1991. "Variogram fitting with a general class of conditionally nonnegative definite functions," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 87-96, January.
    2. Spence, Jeffrey S. & Carmack, Patrick S. & Gunst, Richard F. & Schucany, William R. & Woodward, Wayne A. & Haley, Robert W., 2007. "Accounting for Spatial Dependence in the Analysis of SPECT Brain Imaging Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 464-473, June.
    3. Genton, Marc G. & Gorsich, David J., 2002. "Nonparametric variogram and covariogram estimation with Fourier-Bessel matrices," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 47-57, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:csdana:v:56:y:2012:i:12:p:4215-4228 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1737-1747. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.