IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A new class of semiparametric semivariogram and nugget estimators

Listed author(s):
  • Carmack, Patrick S.
  • Spence, Jeffrey S.
  • Schucany, William R.
  • Gunst, Richard F.
  • Lin, Qihua
  • Haley, Robert W.
Registered author(s):

    Several authors have proposed nonparametric semivariogram estimators. Shapiro and Botha (1991) did so by application of Bochner’s theorem and Cherry et al. (1996) further investigated this technique where it performed favorably against parametric estimators even when data were generated under the parametric model. While the former makes allowances for a prescribed nugget and the latter outlines a possible approach, neither of these demonstrate nugget estimation in practice, which is essential to spatial modeling and proper statistical inference. We propose a modified form of this method, which admits practical nugget estimation and broadens the basis. This is achieved by a simple change to the basis and an appropriate restriction of the node space as dictated by the first root of the Bessel function of the first kind of order ν. The efficacy of this new unsupervised semiparametric method is demonstrated via application and simulation, where it is shown to be comparable with correctly specified parametric models while outperforming misspecified ones. We conclude with remarks about selecting the appropriate basis and node space definition.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 6 ()
    Pages: 1737-1747

    in new window

    Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1737-1747
    DOI: 10.1016/j.csda.2011.10.017
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Shapiro, A. & Botha, J. D., 1991. "Variogram fitting with a general class of conditionally nonnegative definite functions," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 87-96, January.
    2. Spence, Jeffrey S. & Carmack, Patrick S. & Gunst, Richard F. & Schucany, William R. & Woodward, Wayne A. & Haley, Robert W., 2007. "Accounting for Spatial Dependence in the Analysis of SPECT Brain Imaging Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 464-473, June.
    3. Genton, Marc G. & Gorsich, David J., 2002. "Nonparametric variogram and covariogram estimation with Fourier-Bessel matrices," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 47-57, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1737-1747. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.