IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i4p1815-1827.html

Laplace random effects models for interlaboratory studies

Author

Listed:
  • Rukhin, Andrew L.
  • Possolo, Antonio

Abstract

A model is introduced for measurements obtained in collaborative interlaboratory studies, comprising measurement errors and random laboratory effects that have Laplace distributions, possibly with heterogeneous, laboratory-specific variances. Estimators are suggested for the common median and for its standard deviation. We provide predictors of the laboratory effects, and of their pairwise differences, along with the standard errors of these predictors. Explicit formulas are given for all estimators, whose sampling performance is assessed in a Monte Carlo simulation study.

Suggested Citation

  • Rukhin, Andrew L. & Possolo, Antonio, 2011. "Laplace random effects models for interlaboratory studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1815-1827, April.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1815-1827
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00444-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Davies, Laurie, 1991. "A stochastic model for interlaboratory tests," Computational Statistics & Data Analysis, Elsevier, vol. 12(2), pages 201-209, September.
    2. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, January.
    3. Wilcox, Rand R., 2006. "Comparing medians," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1934-1943, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew L. Rukhin, 2013. "Estimating heterogeneity variance in meta-analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 451-469, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauer, Ida & Haupt, Harry & Linner, Stefan, 2024. "Pinball boosting of regression quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 200(C).
    2. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    3. Javier Alejo & Nicolás Badaracco, 2015. "Counterfactual Distributions in Bivariate Models—A Conditional Quantile Approach," Econometrics, MDPI, vol. 3(4), pages 1-14, November.
    4. Zhao, Zhibiao & Wu, Wei Biao, 2009. "Nonparametric inference of discretely sampled stable Lévy processes," Journal of Econometrics, Elsevier, vol. 153(1), pages 83-92, November.
    5. Ho, Hwai-Chung, 2015. "Sample quantile analysis for long-memory stochastic volatility models," Journal of Econometrics, Elsevier, vol. 189(2), pages 360-370.
    6. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.
    7. Yebin Cheng & Jan G. De Gooijer & Dawit Zerom, 2011. "Efficient Estimation of an Additive Quantile Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 46-62, March.
    8. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    9. Ikechukwu Darlington Nwaka & Fatma Guven-Lisaniler & Gulcay Tuna, 2016. "Gender wage differences in Nigerian self and paid employment: Do marriage and children matter?," The Economic and Labour Relations Review, , vol. 27(4), pages 490-510, December.
    10. Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
    11. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    12. Abeliansky, Ana & Krenz, Astrid, 2015. "Democracy and international trade: Differential effects from a panel quantile regression framework," University of Göttingen Working Papers in Economics 243, University of Goettingen, Department of Economics.
    13. Das, Priyam & Ghosal, Subhashis, 2018. "Bayesian non-parametric simultaneous quantile regression for complete and grid data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 172-186.
    14. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    15. repec:hum:wpaper:sfb649dp2015-031 is not listed on IDEAS
    16. Normann Lorenz, 2014. "Using quantile regression for optimal risk adjustment," Research Papers in Economics 2014-11, University of Trier, Department of Economics.
    17. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    18. Joachim Wagner, 2014. "Exports, foreign direct investments and productivity: are services firms different?," The Service Industries Journal, Taylor & Francis Journals, vol. 34(1), pages 24-37, January.
    19. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    20. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    21. Lv, Yang & Qin, Guoyou & Zhu, Zhongyi, 2024. "Population-level information for improving quantile regression efficiency," Statistics & Probability Letters, Elsevier, vol. 215(C).

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1815-1827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.