IDEAS home Printed from
   My bibliography  Save this article

Joint segmentation of multivariate Gaussian processes using mixed linear models


  • Picard, F.
  • Lebarbier, E.
  • Budinskà, E.
  • Robin, S.


The joint segmentation of multiple series is considered. A mixed linear model is used to account for both covariates and correlations between signals. An estimation algorithm based on EM which involves a new dynamic programming strategy for the segmentation step is proposed. The computational efficiency of this procedure is shown and its performance is assessed through simulation experiments. Applications are presented in the field of climatic data analysis.

Suggested Citation

  • Picard, F. & Lebarbier, E. & Budinskà, E. & Robin, S., 2011. "Joint segmentation of multivariate Gaussian processes using mixed linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1160-1170, February.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:1160-1170

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    2. Dobigeon, Nicolas & Tourneret, Jean-Yves, 2007. "Joint segmentation of wind speed and direction using a hierarchical model," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5603-5621, August.
    3. Henri Caussinus & Olivier Mestre, 2004. "Detection and correction of artificial shifts in climate series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(3), pages 405-425.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:1160-1170. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.