IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v207y2025ics0167947325000179.html
   My bibliography  Save this article

Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation

Author

Listed:
  • Pesonen, Henri
  • Corander, Jukka

Abstract

Approximate Bayesian computation (ABC) methods are standard tools for inferring parameters of complex models when the likelihood function is analytically intractable. A popular approach to improving the poor acceptance rate of the basic rejection sampling ABC algorithm is to use sequential Monte Carlo (ABC SMC) to produce a sequence of proposal distributions adapting towards the posterior, instead of generating values from the prior distribution of the model parameters. Proposal distribution for the subsequent iteration is typically obtained from a weighted set of samples, often called particles, of the current iteration of this sequence. Current methods for constructing these proposal distributions treat all the particles equivalently, regardless of the corresponding value generated by the sampler, which may lead to inefficiency when propagating the information across iterations of the algorithm. To improve sampler efficiency, a modified approach called stratified distance ABC SMC is introduced. The algorithm stratifies particles based on their distance between the corresponding synthetic and observed data, and then constructs distinct proposal distributions for all the strata. Taking into account the distribution of distances across the particle space leads to substantially improved acceptance rate of the rejection sampling. It is shown that further efficiency could be gained by using a newly proposed stopping rule for the sequential process based on the stratified posterior samples and these advances are demonstrated by several examples.

Suggested Citation

  • Pesonen, Henri & Corander, Jukka, 2025. "Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:csdana:v:207:y:2025:i:c:s0167947325000179
    DOI: 10.1016/j.csda.2025.108141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000179
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Elina Numminen & Lu Cheng & Mats Gyllenberg & Jukka Corander, 2013. "Estimating the Transmission Dynamics of Streptococcus pneumoniae from Strain Prevalence Data," Biometrics, The International Biometric Society, vol. 69(3), pages 748-757, September.
    2. Simon N. Wood, 2010. "Statistical inference for noisy nonlinear ecological dynamic systems," Nature, Nature, vol. 466(7310), pages 1102-1104, August.
    3. Drovandi, Christopher C. & Pettitt, Anthony N., 2011. "Likelihood-free Bayesian estimation of multivariate quantile distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2541-2556, September.
    4. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Victor M.-H. & Nott, David J. & Tran, Minh-Ngoc & Sisson, Scott A. & Drovandi, Christopher C., 2018. "Likelihood-free inference in high dimensions with synthetic likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 271-291.
    2. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    3. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    4. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    5. Niyousha Hosseinichimeh & Hazhir Rahmandad & Mohammad S. Jalali & Andrea K. Wittenborn, 2016. "Estimating the parameters of system dynamics models using indirect inference," System Dynamics Review, System Dynamics Society, vol. 32(2), pages 154-178, April.
    6. Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
    7. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    8. George Karabatsos, 2018. "On Bayesian Testing of Additive Conjoint Measurement Axioms Using Synthetic Likelihood," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 321-332, June.
    9. Jean-Jacques Forneron, 2019. "A Scrambled Method of Moments," Papers 1911.09128, arXiv.org.
    10. Dehideniya, Mahasen B. & Drovandi, Christopher C. & McGree, James M., 2018. "Optimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 277-297.
    11. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046, Enero-Abr.
    12. Evrendilek, F. & Karakaya, N., 2014. "Regression model-based predictions of diel, diurnal and nocturnal dissolved oxygen dynamics after wavelet denoising of noisy time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 8-15.
    13. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    14. King, Aaron A. & Lin, Qianying & Ionides, Edward L., 2022. "Markov genealogy processes," Theoretical Population Biology, Elsevier, vol. 143(C), pages 77-91.
    15. Kobayashi, Genya, 2014. "A transdimensional approximate Bayesian computation using the pseudo-marginal approach for model choice," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 167-183.
    16. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    17. Lili Zhuang & Noel Cressie, 2014. "Bayesian hierarchical statistical SIRS models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 601-646, November.
    18. Marco Bee & Julien Hambuckers & Flavio Santi & Luca Trapin, 2021. "Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach," Computational Statistics, Springer, vol. 36(3), pages 2177-2200, September.
    19. Marko Järvenpää & Mohamad R Abdul Sater & Georgia K Lagoudas & Paul C Blainey & Loren G Miller & James A McKinnell & Susan S Huang & Yonatan H Grad & Pekka Marttinen, 2019. "A Bayesian model of acquisition and clearance of bacterial colonization incorporating within-host variation," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-25, April.
    20. Nguyen, Dao, 2016. "Another look at Bayes map iterated filtering," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 32-36.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:207:y:2025:i:c:s0167947325000179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.