IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v105y2017icp11-23.html

Quasi-systematic sampling from a continuous population

Author

Listed:
  • Wilhelm, Matthieu
  • Tillé, Yves
  • Qualité, Lionel

Abstract

A specific family of point processes is introduced that allow to select samples for the purpose of estimating the mean or the integral of a function of a real variable. These processes, called quasi-systematic processes, depend on a tuning parameter r>0 that permits to control the likeliness of jointly selecting neighbor units in a same sample. When r is large, units that are close tend to not be selected together and samples are well spread. When r tends to infinity, the sampling design is close to systematic sampling. For all r>0, the first and second-order unit inclusion densities are positive, allowing for unbiased estimators of variance. Algorithms to generate these sampling processes for any positive real value of r are presented. When r is large, the estimator of variance is unstable. It follows that r must be chosen by the practitioner as a trade-off between an accurate estimation of the target parameter and an accurate estimation of the variance of the parameter estimator. The method’s advantages are illustrated with a set of simulations.

Suggested Citation

  • Wilhelm, Matthieu & Tillé, Yves & Qualité, Lionel, 2017. "Quasi-systematic sampling from a continuous population," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 11-23.
  • Handle: RePEc:eee:csdana:v:105:y:2017:i:c:p:11-23
    DOI: 10.1016/j.csda.2016.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731630175X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cordy, Clifford B., 1993. "An extension of the Horvitz--Thompson theorem to point sampling from a continuous universe," Statistics & Probability Letters, Elsevier, vol. 18(5), pages 353-362, December.
    2. Jesper Møller & Rasmus P. Waagepetersen, 2007. "Modern Statistics for Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 643-684, December.
    3. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janusz L. Wywiał, 2020. "Estimating the population mean using a continuous sampling design dependent on an auxiliary variable," Statistics in Transition New Series, Polish Statistical Association, vol. 21(5), pages 1-16, December.
    2. Eyob Tekle Weldemariam & Tadesse Beyene Okbagaber, 2023. "Consumers’ Environmental Concern and Green Consumerism: Do the Normative Environmental Roles of Stakeholders Matter?," International Journal of Science and Business, IJSAB International, vol. 20(1), pages 71-91.
    3. Steen Magnussen & Johannes Breidenbach, 2020. "Retrieval of among-stand variances from one observation per stand," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(4), pages 133-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janine B. Illian & David F. R. P. Burslem, 2017. "Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 495-520, October.
    2. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
    3. Michaela Prokešová & Jiří Dvořák & Eva B. Vedel Jensen, 2017. "Two-step estimation procedures for inhomogeneous shot-noise Cox processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 513-542, June.
    4. Kenneth A. Flagg & Andrew Hoegh & John J. Borkowski, 2020. "Modeling Partially Surveyed Point Process Data: Inferring Spatial Point Intensity of Geomagnetic Anomalies," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 186-205, June.
    5. Lorenzo Tedesco & Jacopo Rodeschini & Philipp Otto, 2025. "Computational Benchmark Study in Spatio‐Temporal Statistics With a Hands‐On Guide to Optimise R," Environmetrics, John Wiley & Sons, Ltd., vol. 36(5), July.
    6. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    7. Arii, Ken & Caspersen, John P. & Jones, Trevor A. & Thomas, Sean C., 2008. "A selection harvesting algorithm for use in spatially explicit individual-based forest simulation models," Ecological Modelling, Elsevier, vol. 211(3), pages 251-266.
    8. Jesper Møller & Jakob G. Rasmussen, 2024. "Cox processes driven by transformed Gaussian processes on linear networks—A review and new contributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1288-1322, September.
    9. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    10. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    11. Jonas Rumpf & Helga Weindl & Peter Höppe & Ernst Rauch & Volker Schmidt, 2009. "Tropical cyclone hazard assessment using model-based track simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 383-398, March.
    12. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    13. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    14. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    15. Jesper Møller & Farzaneh Safavimanesh & Jakob Gulddahl Rasmussen, 2016. "The cylindrical $K$-function and Poisson line cluster point processes," Biometrika, Biometrika Trust, vol. 103(4), pages 937-954.
    16. Rodríguez, José E. & Ávila, Fernando, 2003. "Optimal random sampling designs in random field sampling," DES - Working Papers. Statistics and Econometrics. WS ws035211, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Janusz L. Wywiał, 2020. "Estimating the population mean using a continuous sampling design dependent on an auxiliary variable," Statistics in Transition New Series, Polish Statistical Association, vol. 21(5), pages 1-16, December.
    18. Roba Bairakdar & Debbie Dupuis & Melina Mailhot, 2024. "Deviance Voronoi Residuals for Space-Time Point Process Models: An Application to Earthquake Insurance Risk," Papers 2410.04369, arXiv.org.
    19. Jonas R. Brehmer & Tilmann Gneiting & Marcus Herrmann & Warner Marzocchi & Martin Schlather & Kirstin Strokorb, 2024. "Comparative evaluation of point process forecasts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(1), pages 47-71, February.
    20. Carolina Bello & Thomas W. Crowther & Danielle Leal Ramos & Teresa Morán-López & Marco A. Pizo & Daisy H. Dent, 2024. "Frugivores enhance potential carbon recovery in fragmented landscapes," Nature Climate Change, Nature, vol. 14(6), pages 636-643, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:105:y:2017:i:c:p:11-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.