IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i2p717-730.html
   My bibliography  Save this article

Transiently chaotic neural networks with piecewise linear output functions

Author

Listed:
  • Chen, Shyan-Shiou
  • Shih, Chih-Wen

Abstract

Admitting both transient chaotic phase and convergent phase, the transiently chaotic neural network (TCNN) provides superior performance than the classical networks in solving combinatorial optimization problems. We derive concrete parameter conditions for these two essential dynamic phases of the TCNN with piecewise linear output function. The confirmation for chaotic dynamics of the system results from a successful application of the Marotto theorem which was recently clarified. Numerical simulation on applying the TCNN with piecewise linear output function is carried out to find the optimal solution of a travelling salesman problem. It is demonstrated that the performance is even better than the previous TCNN model with logistic output function.

Suggested Citation

  • Chen, Shyan-Shiou & Shih, Chih-Wen, 2009. "Transiently chaotic neural networks with piecewise linear output functions," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 717-730.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:717-730
    DOI: 10.1016/j.chaos.2007.01.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907001816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.01.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marotto, F.R., 2005. "On redefining a snap-back repeller," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 25-28.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dohtani, Akitaka, 2011. "Chaos resulting from nonlinear relations between different variables," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 290-297.
    2. Gardini, Laura & Sushko, Iryna & Avrutin, Viktor & Schanz, Michael, 2011. "Critical homoclinic orbits lead to snap-back repellers," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 433-449.
    3. Tamotsu Onozaki, 2018. "Nonlinearity, Bounded Rationality, and Heterogeneity," Springer Books, Springer, number 978-4-431-54971-0, September.
    4. Jiang, Guirong & Yang, Qigui, 2009. "Complex dynamics in a linear impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2341-2353.
    5. Elhafsi Boukhalfa & Elhadj Zeraoulia, 2014. "Existence of Super Chaotic Attractors in a General Piecewise Smooth Map of the Plane," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 12(1), pages 92-98.
    6. Gardini, Laura & Hommes, Cars & Tramontana, Fabio & de Vilder, Robin, 2009. "Forward and backward dynamics in implicitly defined overlapping generations models," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 110-129, August.
    7. A. M. A. El-Sayed & S. M. Salman, 2019. "Dynamical analysis of a complex logistic-type map," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(2), pages 427-450, June.
    8. Liang, Wei & Lv, Xiaolin, 2022. "Li-Yorke chaos in a class of controlled delay difference equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Salman, S.M. & Yousef, A.M. & Elsadany, A.A., 2016. "Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 20-31.
    10. Li, Yan & Wang, Lidong, 2019. "Chaos in a duopoly model of technological innovation with bounded rationality based on constant conjectural variation," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 116-126.
    11. Ekaterina Ekaterinchuk & Jochen Jungeilges & Tatyana Ryazanova & Iryna Sushko, 2017. "Dynamics of a minimal consumer network with uni-directional influence," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 831-857, November.
    12. Zhao, Yi & Xie, Lingli & Yiu, K.F. Cedric, 2009. "An improvement on Marotto’s theorem and its applications to chaotification of switching systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2225-2232.
    13. Rahman, Aminur & Blackmore, Denis, 2017. "Threshold voltage dynamics of chaotic RS flip-Flops," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 555-566.
    14. Sun, Huijing & Cao, Hongjun, 2007. "Bifurcations and chaos of a delayed ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1383-1393.
    15. Shi, Yuming & Yu, Pei, 2006. "Study on chaos induced by turbulent maps in noncompact sets," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1165-1180.
    16. Deng, Liuchun & Khan, M. Ali, 2018. "On Mitra’s sufficient condition for topological chaos: Seventeen years later," Economics Letters, Elsevier, vol. 164(C), pages 70-74.
    17. Gao, Yinghui, 2009. "Complex dynamics in a two-dimensional noninvertible map," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1798-1810.
    18. Ingrid Kubin & Laura Gardini, 2022. "On the significance of borders: the emergence of endogenous dynamics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(1), pages 41-62, January.
    19. Stankevich, N.V. & Gonchenko, A.S. & Popova, E.S. & Gonchenko, S.V., 2023. "Complex dynamics of the simplest neuron model: Singular chaotic Shilnikov attractor as specific oscillatory neuron activity," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. Tatsumi, Keiji & Obita, Yoshinori & Tanino, Tetsuzo, 2009. "Chaos generator exploiting a gradient model with sinusoidal perturbations for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1705-1723.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:717-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.