IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925003893.html
   My bibliography  Save this article

Graph convolutional network for structural equivalent key nodes identification in complex networks

Author

Listed:
  • Patel, Asmita
  • Singh, Buddha

Abstract

Identifying key influential nodes in complex networks is crucial for applications such as social network analysis, epidemiology, and recommendation systems. This paper proposes SE_GCN (Structural Equivalence with Graph Convolutional Network), a method that combines structural equivalence with Graph Convolutional Networks (GCNs) to identify key nodes in complex networks. SE_GCN leverages structural similarities among nodes at various hop distances to construct a comprehensive feature matrix, which is directly used for node embedding. GCNs are employed to process this feature matrix, learning effective representations of nodes within the network. The fully connected layer of SE_GCN computes the embedded score of each node, and a sigmoid function predicts the influential probabilities of nodes. The performance of SE_GCN is evaluated by comparing it with the Susceptible-Infected-Recovered (SIR) epidemiological model, Kendall's tau correlation, and Jaccard similarity. The proposed method is assessed using baseline methods in terms of infection rate, seed set size, correlation coefficient, and similarity index across several synthetic and real-world networks. The results demonstrate that SE_GCN outperforms existing methods, highlighting its effectiveness and robustness in identifying influential nodes.

Suggested Citation

  • Patel, Asmita & Singh, Buddha, 2025. "Graph convolutional network for structural equivalent key nodes identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003893
    DOI: 10.1016/j.chaos.2025.116376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925003893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.