IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001973.html
   My bibliography  Save this article

Criticality in neural cultures: Insights into memory and connectivity in entorhinal-hippocampal networks

Author

Listed:
  • Iannello, Ludovico
  • Tonelli, Fabrizio
  • Cremisi, Federico
  • Calcagnile, Lucio Maria
  • Mannella, Riccardo
  • Amato, Giuseppe
  • Di Garbo, Angelo

Abstract

The brain is a complex system of interconnected regions that underlie memory, cognition, and perception. Today, our understanding of the brain’s dynamic processes remains incomplete, particularly regarding differences in electrophysiological activity and inter-regional connectivity among specific areas. To explore this, we investigated the electrical activity, functional connectivity, and interactions of neural cultures differentiated into hippocampal, isocortical, and entorhinal networks using multi-electrode arrays (MEAs) to record extracellular local field potentials. Our results showed that collective synchronization events, or network bursts, were present in all cultures except for the hippocampal networks. Interestingly, introducing entorhinal neuron spheroids onto hippocampal cultures induced synchronized activity. Furthermore, Self-organized criticality analysis confirmed that all networks, except hippocampal cultures, were in a critical regime. Moreover, we found that entorhinal-hippocampal coupling facilitated criticality, promoting recurrent synchronized activity patterns. The consistent scaling exponents across configurations underscore the universality of criticality in biological networks. Finally, power spectrum analysis revealed a theta band peak in connected entorhinal-hippocampal cultures, consistent with in vivo studies, highlighting the role of theta oscillations in memory consolidation. Our findings provide more insights into brain functioning and offer an in vitro model for studying learning and memory.

Suggested Citation

  • Iannello, Ludovico & Tonelli, Fabrizio & Cremisi, Federico & Calcagnile, Lucio Maria & Mannella, Riccardo & Amato, Giuseppe & Di Garbo, Angelo, 2025. "Criticality in neural cultures: Insights into memory and connectivity in entorhinal-hippocampal networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001973
    DOI: 10.1016/j.chaos.2025.116184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jeff Alstott & Ed Bullmore & Dietmar Plenz, 2014. "powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    2. repec:plo:pcbi00:1005672 is not listed on IDEAS
    3. Alberto Mazzoni & Frédéric D Broccard & Elizabeth Garcia-Perez & Paolo Bonifazi & Maria Elisabetta Ruaro & Vincent Torre, 2007. "On the Dynamics of the Spontaneous Activity in Neuronal Networks," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-12, May.
    4. Elliott Capek & Tiago L. Ribeiro & Patrick Kells & Keshav Srinivasan & Stephanie R. Miller & Elias Geist & Mitchell Victor & Ali Vakili & Sinisa Pajevic & Dante R. Chialvo & Dietmar Plenz, 2023. "Parabolic avalanche scaling in the synchronization of cortical cell assemblies," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Forough Habibollahi & Brett J. Kagan & Anthony N. Burkitt & Chris French, 2023. "Critical dynamics arise during structured information presentation within embodied in vitro neuronal networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    2. Sumeet Kumar & Binxuan Huang & Ramon Alfonso Villa Cox & Kathleen M. Carley, 2021. "An anatomical comparison of fake-news and trusted-news sharing pattern on Twitter," Computational and Mathematical Organization Theory, Springer, vol. 27(2), pages 109-133, June.
    3. Shu Takahashi & Kento Yamamoto & Shumpei Kobayashi & Ryoma Kondo & Ryohei Hisano, 2024. "Dynamic Link and Flow Prediction in Bank Transfer Networks," Papers 2409.08718, arXiv.org, revised Oct 2024.
    4. Li, Heyang & Wu, Meijun & Wang, Yougui & Zeng, An, 2022. "Bibliographic coupling networks reveal the advantage of diversification in scientific projects," Journal of Informetrics, Elsevier, vol. 16(3).
    5. Jiaqi Liang & Linjing Li & Daniel Zeng, 2018. "Evolutionary dynamics of cryptocurrency transaction networks: An empirical study," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-18, August.
    6. Katahira, Kei & Chen, Yu & Akiyama, Eizo, 2021. "Self-organized Speculation Game for the spontaneous emergence of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    7. repec:plo:pone00:0014129 is not listed on IDEAS
    8. Wang, Xuhui & Wu, Jiao & Yang, Zheng & Xu, Kesheng & Wang, Zhengling & Zheng, Muhua, 2024. "The correlation between independent edge and triangle degrees promote the explosive information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    9. Yu Zhang & Claudio Tessone, 2024. "Bitcoin Transaction Behavior Modeling Based on Balance Data," Papers 2409.10407, arXiv.org.
    10. Juan Miguel Carrascosa & Ruben Cuevas & Roberto Gonzalez & Arturo Azcorra & David Garcia, 2015. "Quantifying the Economic and Cultural Biases of Social Media through Trending Topics," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-14, July.
    11. Bershadskii, A. & Ikegaya, Y., 2011. "Chaotic neuron clock," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 342-347.
    12. Bernat Salbanya & Carlos Carrasco-Farré & Jordi Nin, 2024. "Structure matters: Assessing the statistical significance of network topologies," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-28, October.
    13. Zhichao Fang & Jonathan Dudek & Rodrigo Costas, 2020. "The stability of Twitter metrics: A study on unavailable Twitter mentions of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(12), pages 1455-1469, December.
    14. John Bryden & Eric Silverman & Simon T Powers, 2022. "Modelling transitions between egalitarian, dynamic leader and absolutist power structures," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-13, February.
    15. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    16. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    17. Damien Challet & Nikita Gourianov, 2018. "Dynamical regularities of US equities opening and closing auctions," Post-Print hal-01702726, HAL.
    18. Bashkirtseva, Irina A. & Ryashko, Lev B. & Pisarchik, Alexander N., 2020. "Ring of map-based neural oscillators: From order to chaos and back," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    19. Prencipe, Dario, 2017. "The European venture capital landscape: an EIF perspective. Volume III: Liquidity events and returns of EIF-backed VC investments," EIF Working Paper Series 2017/41, European Investment Fund (EIF).
    20. Biton, Dionessa C. & Tarun, Anjali B. & Batac, Rene C., 2020. "Comparing spatio-temporal networks of intermittent avalanche events: Experiment, model, and empirical data," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    21. Sandro Claudio Lera & Didier Sornette, 2017. "GDP growth rates as confined L\'evy flights," Papers 1709.05594, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.