IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v130y2020ics0960077919304710.html
   My bibliography  Save this article

Comparing spatio-temporal networks of intermittent avalanche events: Experiment, model, and empirical data

Author

Listed:
  • Biton, Dionessa C.
  • Tarun, Anjali B.
  • Batac, Rene C.

Abstract

Relaxational processes in many complex systems often occur in the form of avalanches resulting from internal cascades from across the system scale. Here, we probe the space, time, and magnitude signatures of avalanching behavior using a network of temporally-directed links subject to a spatial distance criterion between events in the entire catalog. We apply this method onto three systems with avalanche-like characteristics: (i) highly controllable scaled experiments, particularly that of a slowly-driven pile of granular material in a quasi-two-dimensional setup with open edges; (ii) the sandpile, a numerical model of nearest-neighbor interactions in a grid; and (iii) substantially complete empirical data on earthquakes from southern California. Apart from the recovery of the fat-tailed statistics of event sizes, we recover similar power-laws in the spatial and temporal aspects of the networks of these representative systems, hinting at possible common underlying generative mechanisms governing them. By consolidating the results from experiments, numerical models, and empirical data, we can gain a better understanding of these highly nonlinear processes in nature.

Suggested Citation

  • Biton, Dionessa C. & Tarun, Anjali B. & Batac, Rene C., 2020. "Comparing spatio-temporal networks of intermittent avalanche events: Experiment, model, and empirical data," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919304710
    DOI: 10.1016/j.chaos.2019.109519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919304710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeff Alstott & Ed Bullmore & Dietmar Plenz, 2014. "powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    2. Danijel Schorlemmer & Stefan Wiemer & Max Wyss, 2005. "Variations in earthquake-size distribution across different stress regimes," Nature, Nature, vol. 437(7058), pages 539-542, September.
    3. Didier Sornette & Guy Ouillon, "undated". "Dragon-kings: Mechanisms, statistical methods and empirical evidence," Working Papers ETH-RC-12-004, ETH Zurich, Chair of Systems Design.
    4. Turcotte, Donald L & Malamud, Bruce D, 2004. "Landslides, forest fires, and earthquakes: examples of self-organized critical behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 580-589.
    5. Tarun, Anjali B. & Paguirigan, Antonino A. & Batac, Rene C., 2015. "Spatiotemporal recurrences of sandpile avalanches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 293-300.
    6. Batac, Rene & Pastor, Marissa & Arciaga, Marko & Bantang, Johnrob & Monterola, Christopher, 2009. "Kinks, logarithmic tails, and super-stability in bi-disperse granular media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3072-3082.
    7. Hoffmann, Heiko & Payton, David W., 2014. "Suppressing cascades in a self-organized-critical model with non-contiguous spread of failures," Chaos, Solitons & Fractals, Elsevier, vol. 67(C), pages 87-93.
    8. Zare, Marzieh & Grigolini, Paolo, 2013. "Criticality and avalanches in neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 80-94.
    9. Lee, Ya-Ting & Chen, Chien-chih & Lin, Chai-Yu & Chi, Sung-Ching, 2012. "Negative correlation between power-law scaling and Hurst exponents in long-range connective sandpile models and real seismicity," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 125-130.
    10. Albert-László Barabási, 2005. "The origin of bursts and heavy tails in human dynamics," Nature, Nature, vol. 435(7039), pages 207-211, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Zhi & Peng, Qinke & Lv, Jia & Zhong, Tao, 2017. "Analyzing the posting behaviors in news forums with incremental inter-event time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 203-212.
    2. Shan Lu & Jichang Zhao & Huiwen Wang, 2018. "The Power of Trading Polarity: Evidence from China Stock Market Crash," Papers 1802.01143, arXiv.org.
    3. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Sumeet Kumar & Binxuan Huang & Ramon Alfonso Villa Cox & Kathleen M. Carley, 2021. "An anatomical comparison of fake-news and trusted-news sharing pattern on Twitter," Computational and Mathematical Organization Theory, Springer, vol. 27(2), pages 109-133, June.
    5. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    6. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    7. Rutten, Philip & Lees, Michael H. & Klous, Sander & Sloot, Peter M.A., 2021. "Intermittent and persistent movement patterns of dance event visitors in large sporting venues," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    8. Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.
    9. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    10. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    11. Khalilzadeh, Jalayer, 2022. "It is a small world, or is it? A look into two decades of tourism system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    12. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    13. Li, Heyang & Wu, Meijun & Wang, Yougui & Zeng, An, 2022. "Bibliographic coupling networks reveal the advantage of diversification in scientific projects," Journal of Informetrics, Elsevier, vol. 16(3).
    14. Jiaqi Liang & Linjing Li & Daniel Zeng, 2018. "Evolutionary dynamics of cryptocurrency transaction networks: An empirical study," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-18, August.
    15. Baltakys, Kęstutis & Kanniainen, Juho & Saramäki, Jari & Kivelä, Mikko, 2023. "Investor trade allocation patterns in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 210(C), pages 191-209.
    16. Jiaqi Liang & Linjing Li & Daniel Zeng, 2018. "Evolutionary dynamics of cryptocurrency transaction networks: An empirical study," Papers 1808.08585, arXiv.org.
    17. Diao, Su-Meng & Liu, Yun & Zeng, Qing-An & Luo, Gui-Xun & Xiong, Fei, 2014. "A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 220-228.
    18. Zhou, Bin & Xie, Jia-Rong & Yan, Xiao-Yong & Wang, Nianxin & Wang, Bing-Hong, 2017. "A model of task-deletion mechanism based on the priority queueing system of Barabási," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 415-421.
    19. Chen, Ning & Zhu, Xuzhen & Chen, Yanyan, 2019. "Information spreading on complex networks with general group distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 671-676.
    20. de Benicio, Rosilda B. & Stošić, Tatijana & de Figueirêdo, P.H. & Stošić, Borko D., 2013. "Multifractal behavior of wild-land and forest fire time series in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6367-6374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919304710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.