IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001742.html
   My bibliography  Save this article

Anomalous diffusion induced by combining non-Stokesian friction with nonlinear binding

Author

Listed:
  • Bao, Wen
  • Xing, Rui
  • Wang, Hai-Yan
  • Bao, Jing-Dong

Abstract

We investigate nonequilibrium physical processes governed by a combination of non-Stokesian friction and nonlinear binding, within a framework where the fluctuation–dissipation theorem remains valid. Two distinct models are examined: a non-stationary Langevin equation and a system exhibiting non-Markovian dynamics, the both can induce the limitation of thermal diffusion: ballistic diffusion. In the first case, this behavior arises when the friction decays inversely with time, while in the second case, it results from a lack of low-frequency components in the driving noise. Then, we demonstrate that a logarithmic potential, acting as a weak binding force, can transition ballistic diffusion into full-scale anomalous diffusion. The effective temperature of the system deviates from the equilibrium value and exhibits nonmonotonic variation with the depth of the potential. Moreover, we study the noise-enhanced stability effect of the metastable state. This work highlights the critical impact of ergodicity breaking and underscores the peculiar role of nonlinear potentials in shaping dynamical behavior.

Suggested Citation

  • Bao, Wen & Xing, Rui & Wang, Hai-Yan & Bao, Jing-Dong, 2025. "Anomalous diffusion induced by combining non-Stokesian friction with nonlinear binding," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001742
    DOI: 10.1016/j.chaos.2025.116161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Spezia & L. Curcio & A. Fiasconaro & N. Pizzolato & D. Valenti & B. Spagnolo & P. Bue & E. Peri & S. Colazza, 2008. "Evidence of stochastic resonance in the mating behavior of Nezara viridula (L.)," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 453-458, October.
    2. G. Augello & D. Valenti & A. L. Pankratov & B. Spagnolo, 2009. "Lifetime of the superconductive state in short and long Josephson junctions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(1), pages 145-151, July.
    3. Gene-Wei Li & X. Sunney Xie, 2011. "Central dogma at the single-molecule level in living cells," Nature, Nature, vol. 475(7356), pages 308-315, July.
    4. Agudov, N.V. & Dubkov, A.A. & Safonov, A.V. & Krichigin, A.V. & Kharcheva, A.A. & Guseinov, D.V. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Antonov, I.N. & Carollo, A. & Spagnolo, B., 2021. "Stochastic model of memristor based on the length of conductive region," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Robert L. Jack, 2020. "Ergodicity and large deviations in physical systems with stochastic dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(4), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noh, Minseo & Park, Hyogeun & Kim, Sungjun, 2025. "Dynamic resistive switching of WOx-based memristor for associative learning activities, on-receptor, and reservoir computing," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    2. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Zhao, Xiangkui & Li, Ting, 2025. "Extinction and persistence of a stochastic HBV model," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    4. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Cantudo, A. & Jiménez-Molinos, F. & Ruiz, P.Q. & López, A. & Villena, M.A. & González, M.B. & Campabadal, F. & Roldán, J.B., 2025. "Statistical, simulation and modeling analysis of variability in memristors with single and bilayer dielectrics of HfO2 and Al2O3, a comparison," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    6. Yuklyaevskikh, Georgii A. & Shvetsov, Boris S. & Emelyanov, Andrey V. & Kulagin, Vsevolod A. & Rylkov, Vladimir V. & Demin, Vyacheslav A., 2025. "Plasticity of parylene memristors: Compact phenomenological model and synaptic properties," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    7. Koryazhkina, M.N. & Lebedeva, A.V. & Pakhomova, D.D. & Antonov, I.N. & Razin, V.V. & Budylina, E.D. & Belov, A.I. & Mikhaylov, A.N. & Konakov, A.A., 2025. "Investigation of in vitro neuronal activity processing using a CMOS-integrated ZrO2(Y)-based memristive crossbar," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    8. Singh, R.K., 2025. "Restarts delay escape over a potential barrier," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    9. Guo, Yongfeng & Ding, Jiaxin & Mi, Lina, 2024. "Statistical complexity and stochastic resonance of an underdamped bistable periodic potential system excited by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    10. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    11. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    12. Kwon, Osung & Kim, Sungjun & Agudov, Nikolay & Krichigin, Alexey & Mikhaylov, Alexey & Grimaudo, Roberto & Valenti, Davide & Spagnolo, Bernardo, 2022. "Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    13. Filatov, D.O. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Shenina, M.E. & Antonov, I.N. & Gorshkov, O.N. & Agudov, N.V. & Carollo, A. & Valenti, D. & Spagnolo, B., 2022. "Effect of internal noise on the relaxation time of an yttria stabilized zirconia-based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    14. Guarcello, C., 2021. "Lévy noise effects on Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    15. David T. Limmer & Chloe Y. Gao & Anthony R. Poggioli, 2021. "A large deviation theory perspective on nanoscale transport phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-16, July.
    16. Xu, Yong & Wu, Juan & Du, Lin & Yang, Hui, 2016. "Stochastic resonance in a genetic toggle model with harmonic excitation and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 91-100.
    17. Revin, L.S. & Pankratov, A.L., 2021. "Detection of bias inhomogeneity in Josephson junctions by switching current distributions," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    18. Mohsen Pourmohammad Shahvar & Davide Valenti & Alfonso Collura & Salvatore Micciche & Vittorio Farina & Giovanni Marsella, 2025. "An Integrated Hybrid-Stochastic Framework for Agro-Meteorological Prediction Under Environmental Uncertainty," Stats, MDPI, vol. 8(2), pages 1-25, April.
    19. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Femke L Groeneweg & Martin E van Royen & Susanne Fenz & Veer I P Keizer & Bart Geverts & Jurrien Prins & E Ron de Kloet & Adriaan B Houtsmuller & Thomas S Schmidt & Marcel J M Schaaf, 2014. "Quantitation of Glucocorticoid Receptor DNA-Binding Dynamics by Single-Molecule Microscopy and FRAP," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.