IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001250.html
   My bibliography  Save this article

Restarts delay escape over a potential barrier

Author

Listed:
  • Singh, R.K.

Abstract

In the barrier escape problem, a random searcher starting at the energy minima tries to escape the barrier under the effect of thermal fluctuations. If the random searcher is subject to successive restarts at the bottom of the well, then its escape over the barrier top is delayed compared to the time it would take in absence of restarts. When restarting at an intermediate location, the time required by the random searcher to go from the bottom of the well to the restart location should be considered. Taking into account this time overhead, we find that restarts delay escape, independent of the specific nature of the distribution of restart times, or the location of restart, or the specific details of the random searcher, or the detailed form of the potential energy function; as long as the motion is taking place in a bounded interval. For the special case of Poisson restarts, we study the escape problem for a Brownian particle with a position-dependent restart rate r(x)θ(x0p−x), with x0p being the location of restart. We find that position-dependent restarts delay the escape as compared to Kramers escape time, independent of the specific details of the function r(x). In such a scenario, competing strategies like fluctuating barriers provide a better speed-up for the escape process. We also study ways of modifying time overheads which help expedite escape under restarts.

Suggested Citation

  • Singh, R.K., 2025. "Restarts delay escape over a potential barrier," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001250
    DOI: 10.1016/j.chaos.2025.116112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cantisán, Julia & Seoane, Jesús M. & Sanjuán, Miguel A.F., 2021. "Stochastic resetting in the Kramers problem: A Monte Carlo approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. S. Spezia & L. Curcio & A. Fiasconaro & N. Pizzolato & D. Valenti & B. Spagnolo & P. Bue & E. Peri & S. Colazza, 2008. "Evidence of stochastic resonance in the mating behavior of Nezara viridula (L.)," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 453-458, October.
    3. G. Augello & D. Valenti & A. L. Pankratov & B. Spagnolo, 2009. "Lifetime of the superconductive state in short and long Josephson junctions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(1), pages 145-151, July.
    4. Pinsky, Ross G., 2020. "Diffusive search with spatially dependent resetting," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2954-2973.
    5. Fiasconaro, A & Valenti, D & Spagnolo, B, 2003. "Role of the initial conditions on the enhancement of the escape time in static and fluctuating potentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(1), pages 136-143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiangkui & Li, Ting, 2025. "Extinction and persistence of a stochastic HBV model," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    2. Noh, Minseo & Park, Hyogeun & Kim, Sungjun, 2025. "Dynamic resistive switching of WOx-based memristor for associative learning activities, on-receptor, and reservoir computing," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    3. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Bao, Wen & Xing, Rui & Wang, Hai-Yan & Bao, Jing-Dong, 2025. "Anomalous diffusion induced by combining non-Stokesian friction with nonlinear binding," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    7. Revin, L.S. & Pankratov, A.L., 2021. "Detection of bias inhomogeneity in Josephson junctions by switching current distributions," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    8. Guo, Yongfeng & Ding, Jiaxin & Mi, Lina, 2024. "Statistical complexity and stochastic resonance of an underdamped bistable periodic potential system excited by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    9. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    11. Chun Zhang & Tao Yang & Shi-Xian Qu, 2021. "Impact of time delays and environmental noise on the extinction of a population dynamics model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-16, November.
    12. Cantudo, A. & Jiménez-Molinos, F. & Ruiz, P.Q. & López, A. & Villena, M.A. & González, M.B. & Campabadal, F. & Roldán, J.B., 2025. "Statistical, simulation and modeling analysis of variability in memristors with single and bilayer dielectrics of HfO2 and Al2O3, a comparison," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    13. Mario Abundo, 2023. "The First-Passage Area of Wiener Process with Stochastic Resetting," Methodology and Computing in Applied Probability, Springer, vol. 25(4), pages 1-25, December.
    14. Filatov, D.O. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Shenina, M.E. & Antonov, I.N. & Gorshkov, O.N. & Agudov, N.V. & Carollo, A. & Valenti, D. & Spagnolo, B., 2022. "Effect of internal noise on the relaxation time of an yttria stabilized zirconia-based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Li, Mengdi & Shi, Peiming & Zhang, Wenyue & Han, Dongying, 2021. "A novel underdamped continuous unsaturation bistable stochastic resonance method and its application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    16. Guarcello, C., 2021. "Lévy noise effects on Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    17. Xu, Yong & Wu, Juan & Du, Lin & Yang, Hui, 2016. "Stochastic resonance in a genetic toggle model with harmonic excitation and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 91-100.
    18. Mohsen Pourmohammad Shahvar & Davide Valenti & Alfonso Collura & Salvatore Micciche & Vittorio Farina & Giovanni Marsella, 2025. "An Integrated Hybrid-Stochastic Framework for Agro-Meteorological Prediction Under Environmental Uncertainty," Stats, MDPI, vol. 8(2), pages 1-25, April.
    19. Wu, Jian-Li & Duan, Wei-Long & Luo, Yuhui & Yang, Fengzao, 2020. "Time delay and non-Gaussian noise-enhanced stability of foraging colony system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    20. Yuklyaevskikh, Georgii A. & Shvetsov, Boris S. & Emelyanov, Andrey V. & Kulagin, Vsevolod A. & Rylkov, Vladimir V. & Demin, Vyacheslav A., 2025. "Plasticity of parylene memristors: Compact phenomenological model and synaptic properties," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.