IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925001419.html
   My bibliography  Save this article

Self-oscillation chaotic motion of a liquid crystal elastomer pendulum under gradient-stabilized illumination

Author

Listed:
  • Sun, Xin
  • Zhou, Kuan
  • Chen, Yaqi
  • Gao, Jifeng
  • Xu, Peibao

Abstract

Self-oscillation chaotic motion systems utilizing active materials hold promise for applications in diverse fields such as biomimetic mechanics and medical devices. However, there is currently insufficient exploration of chaotic motion systems. This paper proposes a novel self-oscillation chaotic motion system composed of a liquid crystal elastomer fiber and a mass ball under gradient-stabilized illumination. To explore the self-oscillation motion characteristics of liquid crystal elastomer pendulum system, a theoretical construct is formed by merging the dynamic liquid crystal elastomer model with the dynamic principle. The numerical results demonstrates that the liquid crystal elastomer pendulum exhibits three typical self-oscillation motion modes, which are in-situ oscillation mode, self-oscillation periodic mode, as well as self-oscillation chaotic mode. Moreover, analyzing the balance between liquid crystal elastomer fiber tension work and damping dissipation elucidates the mechanism of periodic mode and chaotic mode. Further, this study investigates the effect of five vital parameters on the self-oscillation motion. The bifurcation diagram effectively illustrates the transformation of oscillation modes and bifurcating routes with the system parameters. It is worth mentioning that existing study has shown that the pendulum can only oscillate periodically under annular gradient illumination, while the radial gradient illumination in this paper can induce chaotic oscillation. The research findings enhance our comprehension of motion behaviors based on active materials, and have significant implications for areas such as nonlinear oscillators and communication encryption.

Suggested Citation

  • Sun, Xin & Zhou, Kuan & Chen, Yaqi & Gao, Jifeng & Xu, Peibao, 2025. "Self-oscillation chaotic motion of a liquid crystal elastomer pendulum under gradient-stabilized illumination," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001419
    DOI: 10.1016/j.chaos.2025.116128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustav Graeber & Kartik Regulagadda & Pascal Hodel & Christian Küttel & Dominic Landolf & Thomas M. Schutzius & Dimos Poulikakos, 2021. "Leidenfrost droplet trampolining," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Yunlong Qiu & Jiajing Chen & Yuntong Dai & Lin Zhou & Yong Yu & Kai Li, 2024. "Mathematical Modeling of the Displacement of a Light-Fuel Self-Moving Automobile with an On-Board Liquid Crystal Elastomer Propulsion Device," Mathematics, MDPI, vol. 12(9), pages 1-18, April.
    3. Wu, Haiyang & Lou, Jiangfeng & Dai, Yuntong & Zhang, Biao & Li, Kai, 2024. "Bifurcation analysis in liquid crystal elastomer spring self-oscillators under linear light fields," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
    5. Yunlong Qiu & Haiyang Wu & Yuntong Dai & Kai Li, 2024. "Behavior Prediction and Inverse Design for Self-Rotating Skipping Ropes Based on Random Forest and Neural Network," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    6. Zhiming Hu & Yunlong Li & Jiu-an Lv, 2021. "Phototunable self-oscillating system driven by a self-winding fiber actuator," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Hao Zeng & Markus Lahikainen & Li Liu & Zafar Ahmed & Owies M. Wani & Meng Wang & Hong Yang & Arri Priimagi, 2019. "Light-fuelled freestyle self-oscillators," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    8. Anne Helene Gelebart & Dirk Jan Mulder & Michael Varga & Andrew Konya & Ghislaine Vantomme & E. W. Meijer & Robin L. B. Selinger & Dirk J. Broer, 2017. "Making waves in a photoactive polymer film," Nature, Nature, vol. 546(7660), pages 632-636, June.
    9. Xiao-Qiao Wang & Chuan Fu Tan & Kwok Hoe Chan & Xin Lu & Liangliang Zhu & Sang-Woo Kim & Ghim Wei Ho, 2018. "In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhuangzhuang & Qiu, Yunlong & Li, Kai, 2025. "Light-fueled self-ejecting liquid crystal elastomer launcher inspired by lizard tail autotomy," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Peibao & Chen, Yaqi & Sun, Xin & Dai, Yuntong & Li, Kai, 2024. "Light-powered self-sustained chaotic motion of a liquid crystal elastomer-based pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    2. Zhao, Jun & Zhang, Zhongrui & Sun, Xiaodie & Zuo, Wei & Li, Kai, 2025. "Multi-modal self-sustained motions of a silicone oil paper disc on a surface driven by hot steam," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    3. Liu, Junxiu & Qian, Guqian & Dai, Yuntong & Yuan, Zongsong & Song, Wenqiang & Li, Kai, 2024. "Nonlinear dynamics modeling of a light-powered liquid crystal elastomer-based perpetual motion machine," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    4. Cheng, Quanbao & Zhou, Lin & Du, Changshen & Li, Kai, 2022. "A light-fueled self-oscillating liquid crystal elastomer balloon with self-shading effect," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Wu, Haiyang & Lou, Jiangfeng & Dai, Yuntong & Zhang, Biao & Li, Kai, 2024. "Bifurcation analysis in liquid crystal elastomer spring self-oscillators under linear light fields," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Sun, Xin & Ge, Dali & Li, Kai & Xu, Peibao, 2024. "Chaotic self-oscillation of liquid crystal elastomer double-line pendulum under a linear temperature field," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    7. Wu, Haiyang & Ge, Dali & Chen, Jiajing & Xu, Peibao & Li, Kai, 2024. "A light-fueled self-rolling unicycle with a liquid crystal elastomer rod engine," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    8. Wu, Haiyang & Ge, Dali & Qiu, Yunlong & Li, Kai & Xu, Peibao, 2025. "Mechanics of light-fueled bidirectional self-rolling in a liquid crystal elastomer rod on a track," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    9. Zhang, Zhuangzhuang & Qiu, Yunlong & Li, Kai, 2025. "Light-fueled self-ejecting liquid crystal elastomer launcher inspired by lizard tail autotomy," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    10. David Urban & Niccolò Marcucci & Christoph Hubertus Wölfle & Jan Torgersen & Dag Roar Hjelme & Emiliano Descrovi, 2023. "Polarization-driven reversible actuation in a photo-responsive polymer composite," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Huang, Chuanyang & Yang, Fan & Li, Kai & Dai, Yuntong & Yu, Yong, 2025. "Modeling and analysis of self-sustaining oscillation behavior of liquid crystal elastomer fiber/baffle system under stable full-field illumination," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    12. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Yanhua Liu & Jinlong Wang & Tao Liu & Zhiting Wei & Bin Luo & Mingchao Chi & Song Zhang & Chenchen Cai & Cong Gao & Tong Zhao & Shuangfei Wang & Shuangxi Nie, 2025. "Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    15. Wu, Haiyang & Qiu, Yunlong & Li, Kai, 2025. "Modeling of a light-fueled liquid crystal elastomer-steered self-wobbling tumbler," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    16. Chen, Haiming & Zhou, Lin & Li, Kai, 2025. "Self-oscillation of a liquid crystal elastomer fiber-shading laminate system under line illumination," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    17. Serena Arnaboldi & Gerardo Salinas & Sabrina Bichon & Sebastien Gounel & Nicolas Mano & Alexander Kuhn, 2023. "Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Jingjing Li & Linlin Mou & Zunfeng Liu & Xiang Zhou & Yongsheng Chen, 2022. "Oscillating light engine realized by photothermal solvent evaporation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Zhou, Jianwen & He, Lipeng & Yu, Gang & Liu, Lei & Gu, Xiangfeng & Wang, Yuecheng & Cheng, Guangming, 2022. "Research on cam frequency-increasing hybrid piezoelectric electromagnetic energy harvester with center symmetric structure," Renewable Energy, Elsevier, vol. 185(C), pages 959-969.
    20. Yunlong Qiu & Haiyang Wu & Yuntong Dai & Kai Li, 2024. "Behavior Prediction and Inverse Design for Self-Rotating Skipping Ropes Based on Random Forest and Neural Network," Mathematics, MDPI, vol. 12(7), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.