IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925002723.html
   My bibliography  Save this article

Modeling and analysis of self-sustaining oscillation behavior of liquid crystal elastomer fiber/baffle system under stable full-field illumination

Author

Listed:
  • Huang, Chuanyang
  • Yang, Fan
  • Li, Kai
  • Dai, Yuntong
  • Yu, Yong

Abstract

In this research, a self-sustaining oscillation liquid crystal elastomer (LCE) fiber/baffle system was constructed, composed of a light-sensitive LCE fiber and a light-blocking baffle. Under stable full-field illumination, this system can maintain self-sustaining oscillation. By utilizing a well-established LCE dynamics model, a nonlinear model of dynamic behavior for the LCE fiber/baffle system was developed, and the main characteristics of the system were analyzed. The results show that the LCE fiber/baffle system displays two distinct modes: self-sustaining oscillation and static. The system's continuous oscillation is maintained through the equilibrium between the energy from light exposure and the energy loss caused by damping. A detailed analysis of key system parameters that influence the oscillation amplitude and frequency was conducted. Compared to typically complex self-excited oscillation systems, this system stands out for its simplicity and ease of fabrication, without the need for specialized light exposure regions. It is poised to catalyze broader creative design approaches in the fields of micro-devices and mechanical engineering.

Suggested Citation

  • Huang, Chuanyang & Yang, Fan & Li, Kai & Dai, Yuntong & Yu, Yong, 2025. "Modeling and analysis of self-sustaining oscillation behavior of liquid crystal elastomer fiber/baffle system under stable full-field illumination," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002723
    DOI: 10.1016/j.chaos.2025.116259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925002723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jun & Zhang, Zhongrui & Sun, Xiaodie & Zuo, Wei & Li, Kai, 2025. "Multi-modal self-sustained motions of a silicone oil paper disc on a surface driven by hot steam," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    2. Wu, Haiyang & Ge, Dali & Qiu, Yunlong & Li, Kai & Xu, Peibao, 2025. "Mechanics of light-fueled bidirectional self-rolling in a liquid crystal elastomer rod on a track," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    3. Liu, Junxiu & Qian, Guqian & Dai, Yuntong & Yuan, Zongsong & Song, Wenqiang & Li, Kai, 2024. "Nonlinear dynamics modeling of a light-powered liquid crystal elastomer-based perpetual motion machine," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    4. Wu, Haiyang & Qiu, Yunlong & Li, Kai, 2025. "Modeling of a light-fueled liquid crystal elastomer-steered self-wobbling tumbler," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    5. Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
    6. Chen, Haiming & Zhou, Lin & Li, Kai, 2025. "Self-oscillation of a liquid crystal elastomer fiber-shading laminate system under line illumination," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    7. Wenqi Hu & Guo Zhan Lum & Massimo Mastrangeli & Metin Sitti, 2018. "Small-scale soft-bodied robot with multimodal locomotion," Nature, Nature, vol. 554(7690), pages 81-85, February.
    8. Xu, Peibao & Chen, Yaqi & Sun, Xin & Dai, Yuntong & Li, Kai, 2024. "Light-powered self-sustained chaotic motion of a liquid crystal elastomer-based pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    9. Wang, Xinzong & Kang, Xiaofang & Ji, Ling & Zhang, Ao & Xia, Guanghui, 2025. "Low frequency vibration energy harvesting of bio-inspired multi-stable piezoelectric vibration system with an adjustable device," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    10. Wu, Haiyang & Ge, Dali & Chen, Jiajing & Xu, Peibao & Li, Kai, 2024. "A light-fueled self-rolling unicycle with a liquid crystal elastomer rod engine," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    11. Hao Zeng & Markus Lahikainen & Li Liu & Zafar Ahmed & Owies M. Wani & Meng Wang & Hong Yang & Arri Priimagi, 2019. "Light-fuelled freestyle self-oscillators," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhuangzhuang & Qiu, Yunlong & Li, Kai, 2025. "Light-fueled self-ejecting liquid crystal elastomer launcher inspired by lizard tail autotomy," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    2. Zhao, Jun & Zhang, Zhongrui & Sun, Xiaodie & Zuo, Wei & Li, Kai, 2025. "Multi-modal self-sustained motions of a silicone oil paper disc on a surface driven by hot steam," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    3. Sun, Xin & Ge, Dali & Li, Kai & Xu, Peibao, 2024. "Chaotic self-oscillation of liquid crystal elastomer double-line pendulum under a linear temperature field," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    4. Wu, Haiyang & Ge, Dali & Chen, Jiajing & Xu, Peibao & Li, Kai, 2024. "A light-fueled self-rolling unicycle with a liquid crystal elastomer rod engine," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    5. Liu, Junxiu & Qian, Guqian & Dai, Yuntong & Yuan, Zongsong & Song, Wenqiang & Li, Kai, 2024. "Nonlinear dynamics modeling of a light-powered liquid crystal elastomer-based perpetual motion machine," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    6. Sun, Xin & Zhou, Kuan & Chen, Yaqi & Gao, Jifeng & Xu, Peibao, 2025. "Self-oscillation chaotic motion of a liquid crystal elastomer pendulum under gradient-stabilized illumination," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    7. Xu, Peibao & Chen, Yaqi & Sun, Xin & Dai, Yuntong & Li, Kai, 2024. "Light-powered self-sustained chaotic motion of a liquid crystal elastomer-based pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    8. Cheng, Quanbao & Zhou, Lin & Du, Changshen & Li, Kai, 2022. "A light-fueled self-oscillating liquid crystal elastomer balloon with self-shading effect," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Wu, Haiyang & Lou, Jiangfeng & Dai, Yuntong & Zhang, Biao & Li, Kai, 2024. "Bifurcation analysis in liquid crystal elastomer spring self-oscillators under linear light fields," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    10. Wu, Haiyang & Ge, Dali & Qiu, Yunlong & Li, Kai & Xu, Peibao, 2025. "Mechanics of light-fueled bidirectional self-rolling in a liquid crystal elastomer rod on a track," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    11. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Yubing Guo & Jiachen Zhang & Wenqi Hu & Muhammad Turab Ali Khan & Metin Sitti, 2021. "Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Ren Hao Soon & Zhen Yin & Metin Alp Dogan & Nihal Olcay Dogan & Mehmet Efe Tiryaki & Alp Can Karacakol & Asli Aydin & Pouria Esmaeili-Dokht & Metin Sitti, 2023. "Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Serena Arnaboldi & Gerardo Salinas & Sabrina Bichon & Sebastien Gounel & Nicolas Mano & Alexander Kuhn, 2023. "Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Van Hiep Nguyen & Saewoong Oh & Manmatha Mahato & Rassoul Tabassian & Hyunjoon Yoo & Seong-Gyu Lee & Mousumi Garai & Kwang Jin Kim & Il-Kwon Oh, 2024. "Functionally antagonistic polyelectrolyte for electro-ionic soft actuator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Wenfei Ai & Kai Hou & Jiaxin Wu & Yue Long & Kai Song, 2024. "Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Chenghai Li & Qiguang He & Yang Wang & Zhijian Wang & Zijun Wang & Raja Annapooranan & Michael I. Latz & Shengqiang Cai, 2022. "Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Bo Hao & Xin Wang & Yue Dong & Mengmeng Sun & Chen Xin & Haojin Yang & Yanfei Cao & Jiaqi Zhu & Xurui Liu & Chong Zhang & Lin Su & Bing Li & Li Zhang, 2024. "Focused ultrasound enables selective actuation and Newton-level force output of untethered soft robots," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Rasool Nasseri & Negin Bouzari & Junting Huang & Hossein Golzar & Sarah Jankhani & Xiaowu (Shirley) Tang & Tizazu H. Mekonnen & Amirreza Aghakhani & Hamed Shahsavan, 2023. "Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.