IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000190.html
   My bibliography  Save this article

Pattern dynamics in a bimolecular reaction–diffusion model with saturation law and cross-diffusion

Author

Listed:
  • Lian, Li-Na
  • Yan, Xiang-Ping
  • Zhang, Cun-Hua

Abstract

This paper is concerned with a bimolecular reaction–diffusion model with saturation law and cross-diffusion and subject to Neumann boundary conditions. Firstly, both the spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the positive constant steady state of model are established through the linearization analysis. Secondly, the amplitude equations of model in proximity to the positive constant steady state are obtained by means of the method of multiple-scale time perturbation analysis and successive approximations as the bifurcation parameters are confined to the interior of Turing instability region and near Turing bifurcation curve. Thirdly, the classification and stability of Turing patterns in the diffusion bimolecular model are analyzed based on the existence and stability of the stationary solutions to the amplitude equations. It is found that the appearance of spatial diffusion in the bimolecular chemical reaction model with saturation law can give rise to nonuniform spatial patterns and lead to more complex dynamical behaviors. When the bifurcation parameters are confined to the interior of Turing instability region and near Turing bifurcation curve, the spot patterns, the strap (maze) patterns as well as the mixture of spot and strap patterns can occur. Theoretical findings show that suitable reaction–diffusion systems can be used to explain the mechanism in formation of patterns in the natural world. Finally, in order to substantiate our theoretical findings, some suitable numerical simulations are also provided according to Matlab software package and difference methods solving the approximate solutions of partial differential equations of parabolic types.

Suggested Citation

  • Lian, Li-Na & Yan, Xiang-Ping & Zhang, Cun-Hua, 2025. "Pattern dynamics in a bimolecular reaction–diffusion model with saturation law and cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000190
    DOI: 10.1016/j.chaos.2025.116006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Moran & Chang, Lili & Jin, Zhen, 2019. "Turing patterns of an SI epidemic model with cross-diffusion on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    2. Abid, Walid & Yafia, Radouane & Aziz-Alaoui, M.A. & Bouhafa, Habib & Abichou, Azgal, 2015. "Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 292-313.
    3. Ghorai, Santu & Poria, Swarup, 2016. "Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 421-429.
    4. Mukherjee, Nayana & Banerjee, Malay, 2022. "Hunting cooperation among slowly diffusing specialist predators can induce stationary Turing patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    5. Liu, Haicheng & Ge, Bin, 2022. "Turing instability of periodic solutions for the Gierer–Meinhardt model with cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Zhao, Hongyong & Zhang, Xuebing & Huang, Xuanxuan, 2015. "Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 462-480.
    7. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Haoming & Xiao, Min & He, Jiajin & Zheng, Weixing, 2024. "Regulating spatiotemporal dynamics for a delay Gierer–Meinhardt model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    3. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Kumari, Sarita & Tiwari, Satish Kumar & Upadhyay, Ranjit Kumar, 2022. "Cross diffusion induced spatiotemporal pattern in diffusive nutrient–plankton model with nutrient recycling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 246-272.
    5. Yang, Junxiang & Kim, Junseok, 2023. "Computer simulation of the nonhomogeneous zebra pattern formation using a mathematical model with space-dependent parameters," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    7. Dong, Yafang & Huo, Liang’an, 2024. "A multi-scale mathematical model of rumor propagation considering both intra- and inter-individual dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    9. Ghorai, Santu & Bairagi, Nandadulal, 2022. "Instabilities in hyperbolic reaction–diffusion system with cross diffusion and species-dependent inertia," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    10. Pan, Yuxuan & Zhu, Linhe, 2024. "Parameter identification method of information propagation models based on different network structures," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    11. Zhao, Bingrui & Shen, Jianwei, 2025. "Navigating epidemic spread through multiplex networks: Unveiling turing instability and cross-diffusion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 660(C).
    12. Liu, Chao & Yu, Longfei & Zhang, Qingling & Li, Yuanke, 2018. "Dynamic analysis of a hybrid bioeconomic plankton system with double time delays and stochastic fluctuations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 115-137.
    13. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    14. Han, Renji & Dai, Binxiang, 2017. "Spatiotemporal dynamics and spatial pattern in a diffusive intraguild predation model with delay effect," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 177-201.
    15. Verdière, Nathalie & Manceau, David & Zhu, Shousheng & Denis-Vidal, Lilianne, 2020. "Inverse problem for a coupling model of reaction-diffusion and ordinary differential equations systems. Application to an epidemiological model," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    16. Nosrati, Komeil & Shafiee, Masoud, 2017. "Dynamic analysis of fractional-order singular Holling type-II predator–prey system," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 159-179.
    17. d’Onofrio, Alberto & Banerjee, Malay & Manfredi, Piero, 2020. "Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    18. Yangyang Shao & Yan Meng & Xinyue Xu, 2022. "Turing Instability and Spatiotemporal Pattern Formation Induced by Nonlinear Reaction Cross-Diffusion in a Predator–Prey System with Allee Effect," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
    19. Wang, Yanan & Wang, Jun & Zhang, Ruilin & Liu, Ou, 2022. "Enhanced by mobility? Effect of users’ mobility on information diffusion in coupled online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    20. Inferrera, G. & Munafò, C.F. & Oliveri, F. & Rogolino, P., 2024. "Reaction-diffusion models of crimo–taxis in a street," Applied Mathematics and Computation, Elsevier, vol. 467(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.