IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v660y2025ics0378437124008227.html
   My bibliography  Save this article

Navigating epidemic spread through multiplex networks: Unveiling turing instability and cross-diffusion dynamics

Author

Listed:
  • Zhao, Bingrui
  • Shen, Jianwei

Abstract

The uneven spatial distribution of populations during epidemics, particularly in light of varying infection statuses, poses significant challenges for disease management. Traditional single-layer network models have shown limitations in capturing these complexities. This study introduces a multiplex network-based epidemic model, incorporating cross-diffusion to simulate the distinct movement patterns of susceptible and infected populations. Through linear stability analysis, we identify the critical conditions precipitating Turing instability, highlighting the dual influence of network topology and cross-diffusion dynamics. Our findings underscore the role of network synchronization and structural entropy in disease transmission and spatial distribution. Utilizing mean-field theory, we elucidate the mechanisms inducing Turing instability within multiplex networks. Empirical validation using 2020’s monthly passenger traffic data and the spatial distribution of COVID-19 cases in China substantiates our theoretical insights. This research presents a robust framework for epidemic control, offering critical guidance for public health interventions, medical resource allocation, and the development of epidemic early warning systems.

Suggested Citation

  • Zhao, Bingrui & Shen, Jianwei, 2025. "Navigating epidemic spread through multiplex networks: Unveiling turing instability and cross-diffusion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 660(C).
  • Handle: RePEc:eee:phsmap:v:660:y:2025:i:c:s0378437124008227
    DOI: 10.1016/j.physa.2024.130312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124008227
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Mingrui & Gao, Shupeng & Liu, Chen & Bai, Yue & Zhang, Lei & Xie, Beilong & Chang, Lili, 2023. "Cross-diffusion induced Turing patterns on multiplex networks of a predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Duan, Moran & Chang, Lili & Jin, Zhen, 2019. "Turing patterns of an SI epidemic model with cross-diffusion on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    3. Zheng, Qianqian & Shen, Jianwei, 2020. "Turing instability induced by random network in FitzHugh-Nagumo model," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    4. Li, Xing & He, Runzi & Xi, Yuxia & Xue, Yakui & Wang, Yunfei & Luo, Xiaofeng, 2024. "The increasing strength of higher-order interactions may homogenize the distribution of infections in Turing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 41-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    2. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Xie, Meiling & Li, Yuhan & Feng, Minyu & Kurths, Jürgen, 2023. "Contact-dependent infection and mobility in the metapopulation SIR model from a birth–death process perspective," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Ge Kai & Yongquan Han & Necdet Sinan Özbek & Wensai Ma & Yaze Liu & Gengyun He & Xinyu Zhao & Yangquan Chen, 2025. "Modeling and Nonlinear Analysis of Plant–Soil Moisture Interactions for Sustainable Land Management: Insights for Desertification Mitigation," Sustainability, MDPI, vol. 17(3), pages 1-21, February.
    6. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. He, Haoming & Xiao, Min & He, Jiajin & Zheng, Weixing, 2024. "Regulating spatiotemporal dynamics for a delay Gierer–Meinhardt model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    8. Xu, Ting & Zhang, Juping & Jin, Zhen, 2025. "Analysis of final size and peak time for SIR epidemic model on simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    9. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    11. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The interplay of behaviors and attitudes in public goods game considering environmental investment," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    14. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    15. d’Onofrio, Alberto & Banerjee, Malay & Manfredi, Piero, 2020. "Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Vivekanandhan, Gayathri & Nourian Zavareh, Mahdi & Natiq, Hayder & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Svetec, Milan, 2022. "Investigation of vaccination game approach in spreading covid-19 epidemic model with considering the birth and death rates," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    17. Inferrera, G. & Munafò, C.F. & Oliveri, F. & Rogolino, P., 2024. "Reaction-diffusion models of crimo–taxis in a street," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    18. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. Zheng, Qianqian & Shen, Jianwei & Xu, Yong & Pandey, Vikas & Guan, Linan, 2022. "Pattern mechanism in stochastic SIR networks with ER connectivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    20. Mohan, Nishith & Kumari, Nitu, 2021. "Positive steady states of a SI epidemic model with cross diffusion," Applied Mathematics and Computation, Elsevier, vol. 410(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:660:y:2025:i:c:s0378437124008227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.