IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077924014978.html
   My bibliography  Save this article

Synergy and discounting effects in spatial public goods games on hypergraphs: The role of third-order reputation-based dynamic assessment

Author

Listed:
  • Ma, Jinlong
  • Zhao, Hongfei

Abstract

Hypergraphs provide a precise framework for capturing higher-order interactions in complex social systems, as well as synergy and discounting effects describe the nonlinear accumulation of benefits in social dilemmas initially. Inspired by the accurate representation of environmental evaluation trends by higher-order reputation, we propose a novel model called third-order reputation-based dynamic assessment to adjust synergy and discounting effects dynamically. Specifically, behavioral shifts are evaluated using third-order reputation, considering both personal and opponent reputations, alongside the dynamic reputation threshold adapting based on global average reputation and local conditions. Synergy and discounting effects dynamically adjust based on the gap between group reputation and the established threshold. Numerical simulations reveal that the third-order reputation-based dynamic assessment effectively promotes the evolution of cooperation in spatial public goods games on uniform random hypergraphs. An increase in the environmental reputation-adjusted investment factor α, the reputation gap factor β, and the reputation change value w all contribute to enhancing cooperation. The local–global reputation weighting factor θ indicates that global reputation has a more significant impact on promoting cooperation than local reputation. All four reputation rules promote cooperation, with the Shunning rule resulting in the clearest distinction between full cooperation and defection. Image Scoring is particularly effective in reducing defection. Furthermore, Simple Standing and Stern Judging similarly reduce defection, but they achieve lower levels of cooperation than Shunning.

Suggested Citation

  • Ma, Jinlong & Zhao, Hongfei, 2025. "Synergy and discounting effects in spatial public goods games on hypergraphs: The role of third-order reputation-based dynamic assessment," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077924014978
    DOI: 10.1016/j.chaos.2024.115945
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014978
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Xian-Bin & Du, Wen-Bo & Rong, Zhi-Hai, 2010. "The evolutionary public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1273-1280.
    2. Zou, Kuan & Han, Wenchen & Zhang, Lan & Huang, Changwei, 2024. "The spatial public goods game on hypergraphs with heterogeneous investment," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    3. Quan, Ji & Li, Haoze & Zhang, Man & Wang, Xianjia, 2024. "Cooperation dynamics in nonlinear spatial public goods games with endogenous synergy and discounting feedback," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    4. Quan, Ji & Nie, Jiacheng & Chen, Wenman & Wang, Xianjia, 2022. "Keeping or reversing social norms promote cooperation by enhancing indirect reciprocity," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    6. Berger, Ulrich & Grüne, Ansgar, 2016. "On the stability of cooperation under indirect reciprocity with first-order information," Games and Economic Behavior, Elsevier, vol. 98(C), pages 19-33.
    7. Yishen Jiang & Xin Wang & Longzhao Liu & Ming Wei & Jingwu Zhao & Zhiming Zheng & Shaoting Tang, 2023. "Nonlinear eco-evolutionary games with global environmental fluctuations and local environmental feedbacks," PLOS Computational Biology, Public Library of Science, vol. 19(6), pages 1-20, June.
    8. Greiff, Matthias & Paetzel, Fabian, 2016. "Second-order beliefs in reputation systems with endogenous evaluations – an experimental study," Games and Economic Behavior, Elsevier, vol. 97(C), pages 32-43.
    9. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    10. Quan, Ji & Zhang, Xiyue & Chen, Wenman & Tang, Caixia & Wang, Xianjia, 2024. "Reputation-dependent social learning on the evolution of cooperation in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    11. Fernando P. Santos & Francisco C. Santos & Jorge M. Pacheco, 2018. "Social norm complexity and past reputations in the evolution of cooperation," Nature, Nature, vol. 555(7695), pages 242-245, March.
    12. Pan, Jianchen & Zhang, Lan & Han, Wenchen & Huang, Changwei, 2023. "Heterogeneous investment promotes cooperation in spatial public goods game on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    13. Zhang, Haifeng & Yang, Hanxin & Du, Wenbo & Wang, Binghong & Cao, Xianbin, 2010. "Evolutionary public goods games on scale-free networks with unequal payoff allocation mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1099-1104.
    14. Yang, Han-Xin & Yang, Jing, 2019. "Reputation-based investment strategy promotes cooperation in public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 886-893.
    15. John M. McNamara & Polly Doodson, 2015. "Reputation can enhance or suppress cooperation through positive feedback," Nature Communications, Nature, vol. 6(1), pages 1-7, May.
    16. Zhang, Lan & Xie, Yuan & Huang, Changwei & Li, Haihong & Dai, Qionglin, 2020. "Heterogeneous investments induced by historical payoffs promote cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Zou, Kuan & Huang, Changwei, 2024. "Incorporating reputation into reinforcement learning can promote cooperation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    18. Huang, Changwei & Han, Wenchen & Li, Haihong & Cheng, Hongyan & Dai, Qionglin & Yang, Junzhong, 2019. "Public cooperation in two-layer networks with asymmetric interaction and learning environments," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 305-313.
    19. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Jianchen & Zhang, Lan & Han, Wenchen & Huang, Changwei, 2023. "Heterogeneous investment promotes cooperation in spatial public goods game on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Zou, Kuan & Huang, Changwei, 2024. "Incorporating reputation into reinforcement learning can promote cooperation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    3. Zou, Kuan & Han, Wenchen & Zhang, Lan & Huang, Changwei, 2024. "The spatial public goods game on hypergraphs with heterogeneous investment," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    4. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    5. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2024. "The impact of reputation-based heterogeneous evaluation and learning on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Quan, Ji & Tang, Caixia & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Reputation evaluation with tolerance and reputation-dependent imitation on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    7. Szolnoki, Attila & Chen, Xiaojie, 2020. "Blocking defector invasion by focusing on the most successful partner," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    8. Zhang, Lan & Xie, Yuan & Huang, Changwei & Li, Haihong & Dai, Qionglin, 2020. "Heterogeneous investments induced by historical payoffs promote cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    9. Quan, Ji & Yang, Xiukang & Wang, Xianjia, 2018. "Spatial public goods game with continuous contributions based on Particle Swarm Optimization learning and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 973-983.
    10. Fan, Ruguo & Zhang, Yingqing & Luo, Ming & Zhang, Hongjuan, 2017. "Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 454-463.
    11. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    12. Wang, Hanchen & Sun, Yichun & Zheng, Lei & Du, Wenbo & Li, Yumeng, 2018. "The public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 396-404.
    13. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2021. "Small fraction of selective cooperators can elevate general wellbeing significantly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    14. Chuanyun Li & Xia Cao & Ming Chi, 2020. "Research on an evolutionary game model and simulation of a cluster innovation network based on fairness preference," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-17, January.
    15. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Group-size dependent synergy in heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    16. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2021. "Effect of reputation-based heterogeneous investment on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Yang, Yizhou & Li, Haihong & Gao, Shun & Dai, Qionglin & Yang, Junzhong, 2025. "Interdependent evolutionary dynamics of opinion and strategy on two-layer networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    18. Wang, Chaoqian & Huang, Chaochao, 2022. "Between local and global strategy updating in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    19. Zhang, Wei, 2024. "Network reciprocity and inequality: The role of additional mixing links among social groups," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Wang, Qun & Wang, Hanchen & Zhang, Zhuxi & Li, Yumeng & Liu, Yu & Perc, Matjaž, 2018. "Heterogeneous investments promote cooperation in evolutionary public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 570-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077924014978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.