IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics096007792401436x.html
   My bibliography  Save this article

Nonequilibrium dynamics in a noise-induced predator–prey model

Author

Listed:
  • Pal, Swadesh
  • Banerjee, Malay
  • Melnik, Roderick

Abstract

Understanding the dynamics of predator–prey systems in the presence of different environmental variability is crucial in ecology for forecasting population behaviour and ensuring ecosystem sustainability. It is a challenging aspect of studying spatio-temporal dynamics in the presence of environmental variability. We provide a noise-induced spatio-temporal predator–prey model to explore how temporal variability and spatial heterogeneity affect population dynamics. The multiplicative stochastic fluctuations in space and time are considered in the prey’s growth rate and predator’s death rate to capture the demographic noise in the ecosystem. We first examine the deterministic models by finding crucial parameters that influence the stability and dynamics of predator and prey populations, following their impact on spatio-temporal pattern formation. Using analytical tools and numerical simulations, we illuminate the mechanisms behind the observed dynamics and highlight the significance of demographic noise in generating ecological patterns. The numerical simulations show that the temporal variability introduced by noise leads to oscillations in population densities and alters the stability of the predator–prey system. Special attention is given to the spatio-temporal system when it fails to produce Turing patterns without noise, and the results show that linear demographic change can cause complex behaviours, such as self-organization, irregular oscillations, and nonequilibrium dynamics. Nevertheless, these findings broadly affect various ecological phenomena, including population persistence, species coexistence, long transients, and ecosystem resilience to demographic perturbations.

Suggested Citation

  • Pal, Swadesh & Banerjee, Malay & Melnik, Roderick, 2025. "Nonequilibrium dynamics in a noise-induced predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s096007792401436x
    DOI: 10.1016/j.chaos.2024.115884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401436X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Irina Bashkirtseva & Alexander Pankratov, 2019. "Stochastic Higgins model with diffusion: pattern formation, multistability and noise-induced preference," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(10), pages 1-9, October.
    2. S. S. Riaz & S. Dutta & S. Kar & D. S. Ray, 2005. "Pattern formation induced by additive noise: a moment-based analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 47(2), pages 255-263, September.
    3. Valenti, D. & Fiasconaro, A. & Spagnolo, B., 2004. "Stochastic resonance and noise delayed extinction in a model of two competing species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(3), pages 477-486.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Yuan & Yan, Xinrui & Sun, Kaibiao, 2024. "Dual effects of additional food supply and threshold control on the dynamics of a Leslie–Gower model with pest herd behavior," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    2. Wang, Min & Fang, Yuwen & Luo, Yuhui & Yang, Fengzao & Zeng, Chunhua & Duan, Wei-Long, 2019. "Influence of non-Gaussian noise on the coherent feed-forward loop with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 46-55.
    3. Chun Zhang & Tao Yang & Shi-Xian Qu, 2021. "Impact of time delays and environmental noise on the extinction of a population dynamics model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-16, November.
    4. Morozov, Andrew Yu. & Almutairi, Dalal & Petrovskii, Sergei V. & Lai, Ying-Cheng, 2023. "Long transients in discontinuous time-discrete models of population dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. N. C. Pati, 2023. "Bifurcations and multistability in a physically extended Lorenz system for rotating convection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-15, August.
    6. Vladislav Soukhovolsky & Anton Kovalev & Yulia Ivanova & Olga Tarasova, 2023. "Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    7. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    8. Wang, Yi & Cao, Jinde & Sun, Gui-Quan & Li, Jing, 2014. "Effect of time delay on pattern dynamics in a spatial epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 137-148.
    9. Zhuo, Xiao-jing & Guo, Yong-feng & Qi, Jing-yan & Wang, Qian-qian, 2024. "Stationary distribution and mean extinction time in a generalist prey–predator model driven by Lévy noises," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    10. Lumi, Neeme & Laas, Katrin & Mankin, Romi, 2015. "Rising relative fluctuation as a warning indicator of discontinuous transitions in symbiotic metapopulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 109-118.
    11. Ma, Chenfei & Zhang, Xiaofeng & Yuan, Rong, 2025. "Dynamic analysis of a stochastic regime-switching Lotka–Volterra competitive system with distributed delays and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    12. Mi, Li-Na & Guo, Yong-Feng & Zhang, Meng & Zhuo, Xiao-Jing, 2023. "Stochastic resonance in gene transcriptional regulatory system driven by Gaussian noise and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Bashkirtseva, Irina & Kolinichenko, Alexander & Ryashko, Lev, 2021. "Stochastic sensitivity of Turing patterns: methods and applications to the analysis of noise-induced transitions," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Varughese, M.M. & Fatti, L.P., 2008. "Incorporating environmental stochasticity within a biological population model," Theoretical Population Biology, Elsevier, vol. 74(1), pages 115-129.
    15. Bekoa, D.J. Owono & Kenfack, W. Fokou & Siewe, M. Siewe, 2022. "Dynamics of saline oscillator under sinusoidal and bounded noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    16. Alsulami, Amer & Petrovskii, Sergei, 2023. "A model of mass extinction accounting for the differential evolutionary response of species to a climate change," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    17. Zhu, Ping, 2021. "An equivalent analytical method to deal with cross-correlated exponential type noises in the nonlinear dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. Tian, Rongrong & Wei, Jinlong & Wu, Jiang-Lun, 2021. "On a generalized population dynamics equation with environmental noise," Statistics & Probability Letters, Elsevier, vol. 168(C).
    19. Gandhimathi, V.M. & Murali, K. & Rajasekar, S., 2006. "Stochastic resonance with different periodic forces in overdamped two coupled anharmonic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1034-1047.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s096007792401436x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.